Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 25(20): A871-A879, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041298

RESUMEN

Injection current, and temperature, dependences of the electroluminescence (EL) spectrum from green InGaN/GaN multiple quantum well (MQW)-based light-emitting diodes (LED) grown on a Si substrate, are investigated over a wide range of injection currents (0.5 µA-350 mA) and temperatures (6-350 K). The results show that an increasing temperature can result in the change of injection current-dependent behavior of the EL spectrum in initial current range. That is, with increasing the injection current in the low current range, the emission process of the MQWs is dominated by filling effect of low-energetic localized states at the low temperature range of around 6 K, and by Coulomb screening of the quantum confinement Stark effect followed by a filling effect of the higher levels of the low-energetic localized states at the intermediate temperature range of around 160 K. However, when the temperature is further raised to the higher temperature range of around 350 K, the emission process of the MQWs in the low current range is dominated by carrier-scattering effect followed by non-radiative recombination process. The aforementioned current-dependent behaviors of the EL spectrum are mainly attributed to the strong localized effect of the green LED, as confirmed by the anomalous temperature dependence of the EL spectrum measured at the low injection current of 5 µA. In addition, the injection current dependence of external quantum efficiency at different temperatures shows that, with increasing temperature from 6 to 350 K, in addition to the enhanced non-radiative recombination, electron overflow becomes more significant, especially in the higher temperature range above 300 K.

2.
Sci Rep ; 10(1): 129, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924822

RESUMEN

This study aimed to investigate temperature dependencies at different injection currents (ICs) of the electroluminescence (EL) spectra from a green InGaN/GaN light-emitting diode (LED) based on multiple quantum wells (MQWs) grown on a Si substrate in a wide range of ICs (0.001-350 mA) and temperatures (6-350 K). The results show that the temperature-changing characteristic of the EL peak energy gradually evolves from an approximately V-shaped temperature dependence into a wave-shaped (three-step blueshift) dependence with increasing IC. Finally, it emerges as an approximately inverted V-shaped temperature dependence. The behavior reflects the fact that the emission related to InGaN is significantly influenced by the changing recombination dynamics of carriers with rising temperature or IC. This is attributed to the presence in the MQW active region of a stronger carrier localization effect across three zones with different average In contents. Moreover, with the decline of the temperature at lower ICs, the temperature behavior of the external quantum efficiency (EQE) value is dominated by the deactivated non-radiative centers. This phenomenon occurs not only in the higher temperature range but also at lower temperatures due to more In-content-induced structural defects, which are confirmed by measurements of the integrated EL intensity as well as the EQE dependence on IC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA