Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 263(2): 203-216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551071

RESUMEN

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Cistitis Intersticial , Receptor Toll-Like 3 , Urotelio , Animales , Femenino , Humanos , Ratones , Diferenciación Celular , Proliferación Celular , Cistitis Intersticial/patología , Cistitis Intersticial/metabolismo , Cistitis Intersticial/genética , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Urotelio/patología , Urotelio/metabolismo
2.
Genomics ; 116(3): 110838, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537807

RESUMEN

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Asunto(s)
Diferenciación Celular , Células Endoteliales de la Vena Umbilical Humana , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Neovascularización Fisiológica , Osteogénesis , Receptores Notch , Transducción de Señal , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Hipoxia de la Célula , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Angiogénesis
3.
Mol Carcinog ; 63(7): 1362-1377, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38656551

RESUMEN

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular , Vía de Señalización Wnt , Pronóstico , Carcinogénesis/genética
4.
Cardiovasc Diabetol ; 23(1): 28, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218882

RESUMEN

BACKGROUND: Sarcopenia is frequently found in patients with heart failure with reduced ejection fraction (HFrEF) and is associated with reduced exercise capacity, poor quality of life and adverse outcomes. Recent evidence suggests that axial thoracic skeletal muscle size could be used as a surrogate to assess sarcopenia in HFrEF. Since diabetes mellitus (DM) is one of the most common comorbidities with HFrEF, we aimed to explore the potential association of axial thoracic skeletal muscle size with left ventricular (LV) remodeling and determine its prognostic significance in this condition. METHODS: A total of 243 diabetes patients with HFrEF were included in this study. Bilateral axial thoracic skeletal muscle size was obtained using cardiac MRI. Patients were stratified by the tertiles of axial thoracic skeletal muscle index (SMI). LV structural and functional indices, as well as amino-terminal pro-B-type natriuretic peptide (NT-proBNP), were measured. The determinants of elevated NT-proBNP were assessed using linear regression analysis. The associations between thoracic SMI and clinical outcomes were assessed using a multivariable Cox proportional hazards model. RESULTS: Patients in the lowest tertile of thoracic SMI displayed a deterioration in LV systolic strain in three components, together with an increase in LV mass and a heavier burden of myocardial fibrosis (all P < 0.05). Moreover, thoracic SMI (ß = -0.25; P < 0.001), rather than body mass index (ß = -0.04; P = 0.55), was independently associated with the level of NT-proBNP. The median follow-up duration was 33.6 months (IQR, 20.4-52.8 months). Patients with adverse outcomes showed a lower thoracic SMI (40.1 [34.3, 47.9] cm2/m2 vs. 45.3 [37.3, 55.0] cm2/m2; P < 0.05) but a similar BMI (P = 0.76) compared with those without adverse outcomes. A higher thoracic SMI indicated a lower risk of adverse outcomes (hazard ratio: 0.96; 95% confidence interval: 0.92-0.99; P = 0.01). CONCLUSIONS: With respect to diabetes patients with HFrEF, thoracic SMI is a novel alternative for evaluating muscle wasting in sarcopenia that can be obtained by a readily available routine cardiac MRI protocol. A reduction in thoracic skeletal muscle size predicts poor outcomes in the context of DM with HFrEF.


Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Sarcopenia , Disfunción Ventricular Izquierda , Humanos , Insuficiencia Cardíaca/diagnóstico por imagen , Sarcopenia/diagnóstico por imagen , Sarcopenia/epidemiología , Calidad de Vida , Biomarcadores , Volumen Sistólico/fisiología , Péptido Natriurético Encefálico , Imagen por Resonancia Magnética , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Fragmentos de Péptidos , Músculo Esquelético/diagnóstico por imagen , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología
5.
Osteoporos Int ; 35(1): 53-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37698600

RESUMEN

We examined the performance of an intelligent fracture liaison service (FLS) assisted by digital health (DH) to reduce all-cause mortality (ACM) risk. According to our findings, the new FLS reduced ACM by 36%. INTRODUCTION: A well-designed secondary prevention program known as FLS enhances the bone densitometry-based assessment rate as well as osteoporosis (OP) medication usage following a fracture. However, there are only a few reports on FLS incorporating DH, and it remains unclear whether this integration has influenced patient ACM, which refers to the overall death rate from any cause during the study period. METHODS: This retrospective observational study was conducted on data from the Fragility Fracture Registration System database linked to the Regional Health Registration Platform of Kunshan City and the Population Death Registration System of Jiangsu Province for one tertiary-level A hospital in China. Patients aged ≥ 50 years, who experienced an OP fracture between January 1, 2017, and July 27, 2022, requiring hospitalization, were selected for analysis. We compared the outcomes of patients who received routine fragility fracture management (the no-FLS group) or FLS (the FLS group). We employed multivariable Cox regression with inverse probability weighting based on the propensity score (PS). RESULTS: Of 2317 patients, 756 (32.6%) received FLS and 1561 (67.4%) did not. Using PS matching, we minimized the baseline characteristic differences between the two groups in the propensity score-matched samples, relative to the unmatched samples. Based on our analysis, the new FLS reduced ACM by 36% (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.47 to 0.87; P-value = 0.004). Moreover, FLS patients experienced further reductions in fall-related mortality, refracture rate, and total refracture-related hospital costs, and had increased dual-energy X-ray absorptiometry (DXA) testing and treatment initiation rates, relative to the no-FLS patients. CONCLUSIONS: A new FLS model implementation assisted by DH can effectively reduce ACM among elderly patients with OP fractures requiring surgery. In future investigations, we recommend examining the scalability of this model.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis , Fracturas Osteoporóticas , Anciano , Humanos , Fracturas Osteoporóticas/epidemiología , Salud Digital , Conservadores de la Densidad Ósea/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/epidemiología , Absorciometría de Fotón , Prevención Secundaria
6.
Osteoporos Int ; 35(7): 1249-1259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38771526

RESUMEN

This large-scale prospective study showed that a significant association between longer duration of daily outdoor walking and reduced osteoporosis risk was found among older adults, particularly among those with a low genetic predisposition to osteoporosis, which highlighted the importance of outdoor walking as a simple, cost-effective adjunct for preventing osteoporosis. PURPOSE: The available cross-sectional data and small-scale studies indicate that outdoor walking benefits bone metabolism. Nevertheless, there is a scarcity of comprehensive prospective research investigating the enduring correlation between outdoor walking and osteoporosis. This study aims to conduct a prospective analysis of the correlation between outdoor walking and osteoporosis while also examining potential variations influenced by genetic susceptibility to osteoporosis. METHODS: 24,700 older adults without osteoporosis at baseline were enrolled. These individuals were followed up until December 31, 2021, during which data on outdoor walking was gathered. The genetic risk score for osteoporosis was comprised of 14 single-nucleotide polymorphisms. RESULTS: 4,586 cases of osteoporosis were identified throughout a median follow-up period of 37.3 months. Those who walked outside for > 30 but ≤ 60 min per day had a hazard ratio (HR) of 0.83 (95% confidence interval (CI): 0.72-0.95) for incident osteoporosis, whereas those who walked outside for > 60 min per day had an HR of 0.60 (95% CI: 0.39-0.92). We found that osteoporosis risk exhibited a declining trend in individuals with low genetic risk. Individuals walking outside for > 60 min per day tended to have the lowest overall osteoporosis risk among those with high genetic risk. CONCLUSIONS: A significant negative correlation exists between an extended period of daily outdoor walking and osteoporosis incidence risk. This correlation is particularly pronounced among individuals with low genetic risk. The results above underscore the significance of outdoor walking as a simple and economical adjunct to public health programs to prevent osteoporosis.


Asunto(s)
Predisposición Genética a la Enfermedad , Osteoporosis , Polimorfismo de Nucleótido Simple , Caminata , Humanos , Femenino , Anciano , Masculino , Caminata/fisiología , Estudios Prospectivos , Osteoporosis/genética , Osteoporosis/epidemiología , Incidencia , Persona de Mediana Edad , Factores de Riesgo , Medición de Riesgo/métodos , Anciano de 80 o más Años , Densidad Ósea/genética , Densidad Ósea/fisiología
7.
Osteoporos Int ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844560

RESUMEN

We conducted a retrospective cohort analysis to examine the association between hemoglobin (Hb) levels and refracture risk in elderly patients with osteoporotic fractures (OPFs). Our findings suggest a nonlinear relationship exists in females, and females with Hb levels below 10.7 g/dL may be at a higher risk of refracture. INTRODUCTION: Hematopoiesis and bone health have a reciprocal influence on each other. Nevertheless, there is a scarcity of in-depth research on the association between Hb levels and the occurrence of fractures. The present research aimed to investigate the correlation between Hb levels and the rate of refracture within 5 years among individuals with OPFs. METHODS: A retrospective cohort analysis was undertaken between 2017 and 2022. The study included 1906 individuals who were inhabitants of Kunshan and were over 60 years old. These individuals had experienced an OPF between January 1, 2017, and July 27, 2022, resulting in their hospitalization. Cox proportional hazard regression models were used to evaluate the risk of refracture within 5 years based on the Hb levels acquired during the admission examination, with consideration for sex differences. A nonlinear relationship was identified using smoothed curve fitting and threshold analysis. Kaplan-Meier curves were used to compare refracture rates between patients with low and high Hb levels. RESULTS: Elderly female patients with OPFs and lower Hb levels exhibited a significantly higher risk of a 5-year refracture. Conversely, no significant associations were observed between the two variables in male patients. A nonlinear correlation was found between Hb levels and the probability of refracture in females, with a turning point identified at 10.7 g/dL of Hb levels. A strong negative association was observed with the five-year refracture rate when Hb levels fell below 10.7 g/dL (hazard ratio (HR) = 0.63; 95% confidence interval (CI) 0.48 to 0.83; P-value = 0.0008). This finding suggests that for every 1 g/dL increase in Hb below 10.7 g/dL, the risk of refracture reduced by 37%. However, no statistically significant association was observed when Hb levels were above 10.7 g/dL. CONCLUSIONS: The findings demonstrated a significant negative correlation between Hb levels and the likelihood of refracture in elderly female patients with OPFs and suggested that elderly females with recent OPFs and Hb levels below 10.7 g/dL may be at a higher risk of refracture. Additionally, the Hb levels can serve as an indicator of bone fragility in elderly female patients with OPFs. These findings highlight the importance of monitoring Hb levels as a part of comprehensive management strategies to both assess skeletal health and prevent refractures in this population.

8.
Crit Rev Biotechnol ; : 1-16, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705840

RESUMEN

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

9.
J Pineal Res ; 76(1): e12924, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37941528

RESUMEN

Osteoporotic bone defects, a severe complication of osteoporosis, are distinguished by a delayed bone healing process and poor repair quality. While bone marrow-derived mesenchymal stem cells (BMMSCs) are the primary origin of bone-forming osteoblasts, their mitochondrial function is impaired, leading to inadequate bone regeneration in osteoporotic patients. Melatonin is well-known for its antioxidant properties and regulation on bone metabolism. The present study postulated that melatonin has the potential to enhance the repair of osteoporotic bone defects by restoring the mitochondrial function of BMMSCs. In vitro administration of melatonin at varying concentrations (0.01, 1, and 100 µM) demonstrated a significant dose-dependent improvement in the mitochondrial function of BMMSCs obtained from ovariectomized rats (OVX-BMMSCs), as indicated by an elevation in mitochondrial membrane potential, adenosine triphosphate synthesis and expression of mitochondrial respiratory chain factors. Melatonin reduced the level of mitochondrial superoxide by activating the silent information regulator type 1 (SIRT1) and its downstream antioxidant enzymes, particularly superoxide dismutase 2 (SOD2). The protective effects of melatonin were found to be nullified upon silencing of Sirt1 or Sod2, underscoring the crucial role of the SIRT1-SOD2 axis in the melatonin-induced enhancement of mitochondrial energy metabolism in OVX-BMMSCs. To achieve a sustained and localized release of melatonin, silk fibroin scaffolds loaded with melatonin (SF@MT) were fabricated. The study involved the surgical creation of bilateral femur defects in OVX rats, followed by the implantation of SF@MT scaffolds. The results indicated that the application of melatonin partially restored the mitochondrial energy metabolism and osteogenic differentiation of OVX-BMMSCs by reinstating mitochondrial redox homeostasis. These findings suggest that the localized administration of melatonin through bone implants holds potential as a therapeutic approach for addressing osteoporotic bone defects.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , Osteoporosis , Humanos , Ratas , Animales , Osteogénesis , Melatonina/metabolismo , Sirtuina 1/metabolismo , Antioxidantes/uso terapéutico , Médula Ósea/metabolismo , Osteoporosis/tratamiento farmacológico , Diferenciación Celular , Mitocondrias/metabolismo , Células Cultivadas
10.
Aging Male ; 27(1): 2310308, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38317318

RESUMEN

OBJECTIVE: As people get older, the innate and acquired immunity of the elderly are affected, resulting in immunosenescence. Prealbumin (PAB), transferrin (TRF), and albumin (ALB) are commonly used markers to monitor protein energy malnutrition (PEM). However, their relationship with the immune system has not been fully explored. METHODS: In our study, a total of 93 subjects (≥65 years) were recruited from Tongji Hospital between January 2015 and February 2017. According to the serum levels of these proteins (PAB, TRF, and ALB), we divided the patients into the high serum protein group and the low serum protein group. Then, we compared the percent expression of lymphocyte subsets between two groups. RESULTS: All the low serum protein groups (PAB, TRF, and ALB) had significant decreases in the percentage of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells and significant increases in the percentage of CD8+ cells, CD8+CD28- cells. PAB, TRF, and ALB levels revealed positive correlations with CD4/CD8 ratio, proportions of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells, and negative correlation with proportions of CD8+ cells, CD8+CD28- cells. CONCLUSIONS: This study suggested PAB, TRF, and ALB could be used as immunosenescence indicators. PEM might accelerate the process of immunosenescence in elderly males.


Asunto(s)
Inmunosenescencia , Prealbúmina , Masculino , Humanos , Anciano , Transferrina , Antígenos CD28 , Proteínas Sanguíneas
11.
Neurourol Urodyn ; 43(2): 382-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078752

RESUMEN

PURPOSE: To design a quick checklist for urodynamic study (UDS), aiming to reduce the occurrence of errors in the process, which may help to increase the quality of UDS. And further to analyze the effectiveness of this quick checklist for UDS quality control. METHODS: First, a quick checklist for uroflow study and pressure-flow study was developed, based on the International Continence Society-Good Urodynamic Practice standards, our previous studies, and recent literature, as well as expert suggestions. Then, patients who underwent UDS between January 2023 to February 2023 were randomly assigned to a study group or a control group. For the study group, the quick checklist was used throughout the UDS process, while the control group did not. The main artefacts were chosen to verify the effectiveness of the quick checklist for improving the UDS quality. RESULTS: The quick checklist comprised three subtypes: checklist for patients, checklist for environment and device, and checklist for UDS test process. 38 UDS traces per group were included. The incidence of missing the standard cough test decreased significantly from 18.4% to 0 (p = 0.012), with the checklist implementation. The baseline drift frequency rate also declined significantly from 39.5% to 5.3% (p < 0.05). Volume < 150 mL on uroflow study occurred in 68.4% of cases and its frequency rate decreased significantly with checklist implementation (p < 0.05). CONCLUSION: A quick checklist for quality control of UDS was developed. The quick checklist as a convenient, quick, and easy used urodynamic quality control method, may help to reduce the technical artefacts and improve fundamental urodynamic quality control. Future research with a larger sample size is needed to confirm the effectiveness of the checklist.


Asunto(s)
Lista de Verificación , Urodinámica , Humanos , Estudios Prospectivos , Control de Calidad , Estándares de Referencia
12.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38600636

RESUMEN

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Asunto(s)
Antiinflamatorios , Sistema Enzimático del Citocromo P-450 , Transferasas Intramoleculares , Triterpenos , Triterpenos/farmacología , Triterpenos/química , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Estructura Molecular , Saccharomyces cerevisiae , Hidroxilación , Células Hep G2 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química
13.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714634

RESUMEN

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Asunto(s)
Cristalización , Griseofulvina , Polímeros , Temperatura de Transición , Griseofulvina/química , Cristalización/métodos , Polímeros/química , Estabilidad de Medicamentos , Enlace de Hidrógeno , Polivinilos/química , Polietilenglicoles/química , Povidona/química , Vidrio/química
14.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621975

RESUMEN

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatopatías Alcohólicas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18 , Polvos , Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Beclina-1 , FN-kappa B/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/genética
15.
Planta ; 258(3): 66, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592053

RESUMEN

MAIN CONCLUSION: Taxodium 703 leaves activate fermentation, amino acids metabolism and ROS detoxification, and reduce TCA cycle and ABA biosynthesis in acclimation to prolonged partial submergence stress. Taxodium hybrid 'Zhongshanshan 703' (T. mucronatum × T. distichum; Taxodium 703) is a highly flooding-tolerant woody plant. To investigate the physiological and transcriptional regulatory mechanisms underlying its leaves in acclimation to long-term flooding, we exposed cuttings of Taxodium 703 to either non-flooding (control) or partial submergence for 2 months. The leaf tissues above (AL) and below (BL) flooding-water were separately harvested. Partial submergence decreased concentrations of chlorophyll (a + b) and dehydroascorbate (DHA) and lactate dehydrogenase (LDH) activity in AL, and reduced biomass, concentrations of succinic acid, fumaric acid and malic acid, and transcript levels of genes involved in tricarboxylic acid (TCA) cycle in BL. Under partial submergence, concentrations of starch, malondialdehyde and abscisic acid (ABA) decreased, and also mRNA levels of nine-cis-epoxycarotenoid dioxygenases that are involved in ABA biosynthesis in AL and BL of Taxodium 703. Partial submergence increased O2- content in AL, and improved concentrations of pyruvate and soluble sugars and activities of LDH and peroxidase in BL. In addition, partial submergence increased concentrations of ethanol, lactate, alanine, γ-aminobutyric acid, total amino acids and ascorbic acid (ASA), and ASA/DHA, activities of alcohol dehydrogenases (ADH) and ascorbate peroxidase, as well as transcript levels of ADH1A, ADH1B and genes involved in alanine biosynthesis and starch degradation in AL and BL of Taxodium 703. Overall, these results suggest that Taxodium 703 leaves activate fermentation, amino acids metabolism and reactive oxygen species detoxification, and maintain a steady supply of sugars, and reduce TCA cycle and ABA biosynthesis in acclimation to prolonged partial submergence stress.


Asunto(s)
Taxodium , Aclimatación , Fermentación , Alanina , Aminoácidos , Ácido Ascórbico
16.
BMC Cancer ; 23(1): 173, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810001

RESUMEN

BACKGROUND: Novel antibody‒drug conjugates (ADC) have shown great efficacy in HER2-low advanced breast cancer. However, the clinical features of HER2-low disease still need to be clarified. The current study aims to evaluate the distribution and dynamic change in HER2 expression in patients with disease recurrence and the clinical outcome of those patients. METHODS: Patients with pathologically diagnosed relapsed breast cancer between 2009 and 2018 were included. Samples were considered HER2-zero when the immunohistochemistry (IHC) score was 0, HER2-low when the IHC score was 1 + or 2 + with negative fluorescence in situ hybridization (FISH) results, and HER2-positive when the IHC score was 3 + or the FISH results were positive. Breast cancer-specific survival (BCSS) was compared among the three HER2 groups. Changes in HER2 status were also evaluated. RESULTS: A total of 247 patients were included. Among recurrent tumors, 53 (21.5%) were HER2-zero, 127 (51.4%) were HER2-low, and 67 (27.1%) were HER2-positive. The HER2-low subtype represented 68.1% of the HR-positive breast cancer group and 31.3% of the HR-negative group (P < 0.001). This three-group classification of HER2 status was prognostic in advanced breast cancer (P = 0.0011), with HER2-positive patients having the best clinical outcome after disease recurrence (P = 0.024), while only marginal survival advantages were observed in HER2-low patients versus HER2-zero patients (P = 0.051). In the subgroup analysis, the survival difference was observed only in patients with HR-negative recurrent tumors (P = 0.0006) or with distant metastasis (P = 0.0037). The overall discordance rate of HER2 status between primary and recurrent tumors was 38.1%, with 25 (49.0%) primary HER2-zero patients and 19 (26.8%) HER2-positive patients shifting to HER2-low at recurrence. CONCLUSION: Nearly half of the advanced breast cancer patients had HER2-low disease, which indicates a poorer prognosis than HER2-positive disease and marginally better outcomes than HER2-zero disease. During disease progression, one-fifth of tumors convert to HER2-low entities, and the corresponding patients may benefit from ADC treatment.


Asunto(s)
Biomarcadores de Tumor , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Biomarcadores de Tumor/metabolismo , Hibridación Fluorescente in Situ/métodos , Recurrencia Local de Neoplasia , Pronóstico
17.
Cell Mol Biol Lett ; 28(1): 88, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891477

RESUMEN

The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.


Asunto(s)
Degeneración del Disco Intervertebral , Osteoporosis , Humanos , Anciano , Senescencia Celular , Envejecimiento/metabolismo , Osteoporosis/terapia , Huesos/metabolismo , Degeneración del Disco Intervertebral/terapia
18.
BMC Ophthalmol ; 23(1): 22, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639741

RESUMEN

BACKGROUND: The decrease of vitamin D plays a critical role in diabetes mellitus (DM)-induced oxidative stress and vascular endothelial injury. Therefore, we investigated the effect and mechanism of 25-hydroxyvitamin D3 (25 (OH) D3) on oxidative stress and ferroptosis induced by high glucose in human retinal microvascular endothelial cells (hRMVECs). And the objective of this paper was to propose a new strategy for the prevention and treatment of diabetic retinopathy (DR). METHODS: First, hRMVECs were transfected with mimics NC or miR-93. After that, cells were treated with 100 nM / 500 nM 25 (OH) D3 and then cultured in a high glucose (30 mM) environment. Subsequently, qRT-PCR was employed to detect the expression level of miR-93; CCK-8 for the proliferation of cells in each group; biochemical tests for the level of intracellular reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and ferrous ion (Fe2+); and Western blot for the expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and SLC7A11). RESULTS: Under a high glucose environment, 25 (OH) D3 at 100 nM/500 nM could significantly promote the proliferation of hRMVECs, remarkably decrease the level of intracellular ROS/MDA, and up-regulate the level of GSH. Besides, 25 (OH) D3 greatly reduced Fe2+ level in the cells while increased protein level of GPX4 and SLC7A11. Subsequently, we found that high glucose induced miR-93 expression, while 25 (OH) D3 markedly decreased high glucose-induced miR-93 overexpression. Furthermore, overexpression of miR-93 inhibited the functions of 25 (OH) D3 by activating ROS (ROS and MDA were up-regulated while GSH was down-regulated) and inducing Fe2+ (Fe2+ level was up-regulated while GPX4 and SLC7A11 level was down-regulated) in cells. CONCLUSION: 25 (OH) D3 may inhibit oxidative stress and ferroptosis in hRMVECs induced by high glucose via down-regulation of miR-93.


Asunto(s)
3,4-Metilenodioxianfetamina , Ferroptosis , MicroARNs , Humanos , Células Endoteliales , Calcifediol , Regulación hacia Abajo , Especies Reactivas de Oxígeno , Estrés Oxidativo , Glucosa/farmacología , MicroARNs/genética
19.
BMC Musculoskelet Disord ; 24(1): 762, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759236

RESUMEN

BACKGROUND: To explore the independent association between lumbar endplate damage and bone mineral density (BMD) in patients with degenerative disc disease (DDD). METHODS: This retrospective investigation was based out of a prospectively collected database from the Affiliated Kunshan Hospital of Jiangsu University. Data from 192 DDD patients, collected between December 2018 and January 2022, were chosen for the final analysis. The average total endplate score (TEPS) of lumbar(L) 1-L4 was assessed by magnetic resonance imaging (MRI), and represents the extent of endplate damage. Osteoporosis severity was assessed via the L1-L4 BMD evidenced by dual-energy x-ray absorptiometry (DXA). Other analyzed information included gender, age, body mass index (BMI), and osteophyte score (OSTS). Uni- and multivariate linear regression analyses were employed to evaluate the association between average TEPS and BMD of L1-L4. Moreover, the generalized additive model (GAM) was employed for non-linear association analysis. RESULTS: Upon gender, age, BMI, and OSTS adjustments, a strong independent inverse relationship was observed between average TEPS and BMD (ß, -0.021; 95% CI, -0.035 to -0.007, P-value = 0.00449). In addition, the gender stratification analysis revealed a linear relationship in males, and a non-linear relationship in females. Specifically, there was a significantly stronger negative relationship between average TEPS and BMD in females, when the average TEPS was < 3.75 (ß, -0.063; 95% CI, -0.114 to -0.013; P-value = 0.0157). However, at an average TEPS > 3.75, the relationship did not reach significance (ß, 0.007; 95% CI, -0.012 to 0.027; P-value = 0.4592). CONCLUSIONS: This study demonstrated the independent negative association between average TEPS and BMD values of L1-L4. Upon gender stratification, a linear relationship was observed in males, and a non-linear association in females. The findings reveal that patients with osteoporosis or endplate damage require more detailed examinations and treatment regimen.


Asunto(s)
Degeneración del Disco Intervertebral , Osteofito , Osteoporosis , Femenino , Masculino , Humanos , Densidad Ósea , Degeneración del Disco Intervertebral/diagnóstico por imagen , Estudios Retrospectivos , Absorciometría de Fotón , Osteoporosis/diagnóstico por imagen
20.
BMC Musculoskelet Disord ; 24(1): 306, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072779

RESUMEN

BACKGROUND: The results of studies exploring the association between serum uric acid (SUA) and bone mineral density (BMD) have been controversial and inconsistent. We thus sought to explore whether SUA levels were independently associated with BMD in patients with osteoporosis (OP). METHODS: This cross-sectional analysis was conducted using prospectively obtained data from the Affiliated Kunshan Hospital of Jiangsu University database pertaining to 1,249 OP patients that were hospitalized from January 2015 - March 2022. BMD was the outcome variable for this study, while baseline SUA levels were the exposure variable. Analyses were adjusted for a range of covariates including age, gender, body mass index (BMI) and a range of other baseline laboratory and clinical findings. RESULTS: SUA levels and BMD were independently positively associated with one another in OP patients. Following adjustment for age, gender, BMI, blood urae nitrogen (BUN), and 25(OH)D levels, a 0.0286 g/cm2 (ß, 0.0286; 95% confidence interval [CI], 0.0193-0.0378, P < 0.000001) increase in BMD was observed per 100 µmol/L rise in SUA levels. A non-linear association between SUA and BMD was also observed for patients with a BMI < 24 kg/m2, with a SUA level inflection point at 296 µmol/L in the adjusted smoothed curve. CONCLUSIONS: These analyses revealed SUA levels to be independently positively associated with BMD in OP patients, with an additional non-linear relationship between these two variables being evident for individuals of normal or low body weight. This suggests that SUA levels may exert a protective effect on BMD at concentrations below 296 µmol/L in normal- and low-weight OP patients, whereas SUA levels above this concentration were unrelated to BMD.


Asunto(s)
Densidad Ósea , Osteoporosis , Humanos , Estudios Transversales , Ácido Úrico , Osteoporosis/diagnóstico por imagen , Índice de Masa Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA