Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Can J Physiol Pharmacol ; 100(8): 741-754, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500287

RESUMEN

Periodontitis is an inflammatory disease of the gums. Periodontitis in diabetic patients can aggravate insulin resistance; however, its molecular and biological mechanism remains unclear. This study aimed to explore the effects of diabetic periodontitis on liver function and determine the mechanism by which artesunate improves liver function. Rats with streptozotocin-induced diabetes were divided into five groups: normal control (NC), diabetic periodontitis (DM + PD), artesunate intervention (ART), insulin intervention (INS), and combined medication intervention (ART + INS) groups. Drug interventions were then administered to the rats in each group as follows: 50 mg/kg artesunate to the ART group, 6 U/kg insulin to the INS group, and 50 mg/kg artesunate + 6 U/kg insulin to the ART + INS group. Blood samples, liver tissues, and the maxillary alveolar bone were collected postsacrifice. ART was found to significantly ameliorate hyperglycemia, blood lipid concentrations, and liver function. The levels of inflammatory factors reduced; the effect was more pronounced in the ART + INS group. Artesunate presumably inhibits the TLR4/NF-κB signaling pathway and expression of downstream inflammatory factors, thereby exerting a protective effect on diabetes-related liver function. This offers a fresh approach to treat diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Periodontitis , Animales , Artesunato/efectos adversos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Insulina , Hígado , FN-kappa B/metabolismo , Periodontitis/complicaciones , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Ratas
2.
Plant Biotechnol J ; 19(10): 2126-2138, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34160879

RESUMEN

Verticillium wilt (VW) is a destructive disease that results in great losses in cotton yield and quality. Identifying genetic variation that enhances crop disease resistance is a primary objective in plant breeding. Here we reported a GWAS of cotton VW resistance in a natural-variation population, challenged by different pathogenicity stains and different environments, and found 382 SNPs significantly associated with VW resistance. The associated signal repeatedly peaked in chromosome Dt11 (68 798 494-69 212 808) containing 13 core elite alleles undescribed previously. The core SNPs can make the disease reaction type from susceptible to tolerant or resistant in accessions with alternate genotype compared to reference genotype. Of the genes associated with the Dt11 signal, 25 genes differentially expressed upon Verticillium dahliae stress, with 21 genes verified in VW resistance via gene knockdown and/or overexpression experiments. We firstly discovered that a gene cluster of L-type lectin-domain containing receptor kinase (GhLecRKs-V.9) played an important role in VW resistance. These results proved that the associated Dt11 region was a major genetic locus responsible for VW resistance. The frequency of the core elite alleles (FEA) in modern varieties was significantly higher than the early/middle varieties (12.55% vs 4.29%), indicating that the FEA increased during artificial selection breeding. The current developmental resistant cultivars, JND23 and JND24, had fixed these core elite alleles during breeding without yield penalty. These findings unprecedentedly provided genomic variations and promising alleles for promoting cotton VW resistance improvement.


Asunto(s)
Verticillium , Ascomicetos , Cromosomas , Resistencia a la Enfermedad/genética , Genómica , Gossypium/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo
3.
Nat Genet ; 53(9): 1385-1391, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373642

RESUMEN

Cotton produces natural fiber for the textile industry. The genetic effects of genomic structural variations underlying agronomic traits remain unclear. Here, we generate two high-quality genomes of Gossypium hirsutum cv. NDM8 and Gossypium barbadense acc. Pima90, and identify large-scale structural variations in the two species and 1,081 G. hirsutum accessions. The density of structural variations is higher in the D-subgenome than in the A-subgenome, indicating that the D-subgenome undergoes stronger selection during species formation and variety development. Many structural variations in genes and/or regulatory regions potentially influencing agronomic traits were discovered. Of 446 significantly associated structural variations, those for fiber quality and Verticillium wilt resistance are located mainly in the D-subgenome and those for yield mainly in the A-subgenome. Our research provides insight into the role of structural variations in genotype-to-phenotype relationships and their potential utility in crop improvement.


Asunto(s)
Fibra de Algodón/análisis , Genoma de Planta/genética , Gossypium/genética , Gossypium/fisiología , Agricultura/métodos , Ligamiento Genético , Variación Genética/genética , Genotipo , Gossypium/clasificación , Fenotipo , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN , Industria Textil/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA