Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancer Cell Int ; 24(1): 111, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528582

RESUMEN

BACKGROUND: Gastric cancer is currently estimated to be the fifth leading common cancer in the world, and responsible for about one million new cases and an estimated 769,000 cancer-related deaths each year. WFDC21P is long non-coding RNA and has been reported to play critical roles in serval types of cancer. Our research aims to investigate the biological effects and molecular mechanism of WFDC21P in gastric cancer. METHODS: Datasets (GSE53137, GSE58828, and GSE109476) in GEO database were used to screen differential expressed lncRNAs in gastric cancer by online GEO2R analysis tool. Quantitative RT-PCR was used to verify the above prediction in ten pairs of gastric cancer and corresponding paracancerous tissues. Pan-cancer analysis was used to analyze the expression of WFDC21P in different types of cancer. Small interfering RNAs were used to WFDC21P knockdown. CCK-8 and colony formation assays were used to measure the proliferation and tumorigenesis abilities. Wound healing and Transwell assay were used to detect the migration and invasion abilities. Proteins that interact with WFDC21P were predicted by catRAPID database. RNA pull down and RNA Immunoprecipitation were used to confirm the interaction. Western blotting was used to detect the key proteins level in calcium homeostasis signaling pathway. Loss-of-function and rescue assays were used to evaluate the biological function of SEC63 at the background of WFDC21P silencing. RESULTS: WFDC21P was upregulated in gastric cancer tissues and cell lines. WFDC21P downregulation suppressed proliferation, tumorigenesis, migration, invasion, and promoted apoptosis in gastric cancer. SEC63 protein had the capability to bind with WFDC21P and the expression of SEC63 was regulated by WFDC21P. SEC63 was also upregulated in gastric cancer and exerted effects during tumor growth and metastasis. CONCLUSIONS: This study confirmed that lncRNA WFDC21P aggravated gastric cancer malignant behaviors by interacting with SEC63 to regulate the calcium homeostasis signaling pathway.

2.
Int J Med Sci ; 17(10): 1320-1326, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32624687

RESUMEN

Epidermal growth factor-like domain-containing protein 6 (EGFL6) belongs to the epidermal growth factor (EGF) superfamily. EGFL6 is expressed at higher levels in embryos and various malignant tumors than in normal tissues. Recent studies suggest that EGFL6 participates in the development of a variety of tumors. In this review, we summarize findings that support the role for EGFL6 in tumor proliferation, invasion and migration. Furthermore, our review results indicate the mechanism of EGFL6 activity angiogenesis. We also describe work toward the preparation of monoclonal antibodies against EGFL6. Altogether, the work of this review promotes understanding of the role of EGFL6 in tumor development, the mechanism of that action, and the potential of EGFL6 as a therapeutic target for tumor prevention and treatment.


Asunto(s)
Biomarcadores/metabolismo , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Proteínas de Unión al Calcio/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Moléculas de Adhesión Celular/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Humanos
3.
Int J Med Sci ; 17(13): 2013-2023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32788880

RESUMEN

Non-muscle myosin heavy chain 9 (MYH9) is one novel low frequency mutated gene identified in esophageal squamous cell carcinoma (ESCC) using next-generation sequencing. However, its clinical relevance, potential function and mechanisms remain elusive. Methods: Genomic sequencing datas from 104 esophageal squamous cell carcinoma (ESCC) cases were screened a series of low frequency mutant genes. MYH9 was selected to further analyze its clinical significance, function and PCR-array was performed to explore its potential mechanism. Results: MHY9 is a low frequency mutant gene with a mutation frequency of 2.88% in ESCC. Immunohistochemical analysis showed that MYH9 expression was significantly higher in ESCC tumor tissues, and the expression levels were associated with lymph node metastasis of ESCC patients. Moreover, we found that MYH9 knock-down led to inhibition of cell migration and invasion. PCR-array showed MYH9 knockdown led to a significant change of genes expression associated with angiogenesis and epithelial-to-mesenchymal transition (EMT). This observation is further confirmed in TCGA database of LUSC (lung squamous cell carcinoma), CESC (cervical squamous cell carcinomas) and HNSC (head and neck squamous cell carcinoma). Conclusions: Collectively, our study identifies a novel role and mechanism of MYH9, highlights a significance of MYH9 as a metastatic biomarker, and offers potential therapeutic targets for ESCC patients harboring MYH9 mutations.


Asunto(s)
Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Cadenas Pesadas de Miosina/genética , Neovascularización Patológica/genética , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Esofágicas/irrigación sanguínea , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/irrigación sanguínea , Carcinoma de Células Escamosas de Esófago/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Mutación , Cadenas Pesadas de Miosina/metabolismo , Neovascularización Patológica/patología , Pronóstico
4.
Am J Hum Genet ; 98(2): 256-74, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833333

RESUMEN

Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Estudios de Asociación Genética/métodos , Variación Genética , Línea Celular , Ciclina D1/genética , Variaciones en el Número de Copia de ADN , Receptores ErbB/genética , Carcinoma de Células Escamosas de Esófago , Eliminación de Gen , Reordenamiento Génico , Genes p16 , Genoma Humano , Genómica , Humanos , Hibridación Fluorescente in Situ , Receptor ErbB-2/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Notch1/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Translocación Genética
7.
Am J Hum Genet ; 96(4): 597-611, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25839328

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets.


Asunto(s)
Carcinoma de Células Escamosas/genética , Citidina Desaminasa/genética , Neoplasias Esofágicas/genética , Predisposición Genética a la Enfermedad/genética , Genoma Humano/genética , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Desaminasas APOBEC-1 , Análisis de Varianza , Secuencia de Bases , Proteína de Unión a CREB/genética , Línea Celular Tumoral , China , Fosfatidilinositol 3-Quinasa Clase I , Variaciones en el Número de Copia de ADN/genética , Carcinoma de Células Escamosas de Esófago , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Inmunohistoquímica , Hibridación Fluorescente in Situ , Proteínas con Dominio LIM/genética , Ligasas , Datos de Secuencia Molecular , Receptores Patched , Receptor Patched-1 , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/genética , Análisis de Secuencia de ADN , Sales de Tetrazolio , Tiazoles , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genética
8.
Zhonghua Bing Li Xue Za Zhi ; 44(4): 274-7, 2015 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25975913

RESUMEN

OBJECTIVE: To study the effect of Mps1 on BRAFWT/MEK/ERK pathway in the presence of wild type BRAF or BRAFV600E in melanoma. METHODS: Melanoma cells harboring BRAFWT genotype were transfected either with pBabe-puro-GST-BRAF-WT and/or pBabe-puro-GFP-Mps1-WT or pBabe-puro-GST-BRAFV600E and/or pBabe-puro-GFP-Mps1-WT, followed by Western blot to detect Mps1 and p-ERK expression. The melanoma cells harboring BRAFWT and BRAFV600E genotype were infected with pSUPER-Mps1 retrovirus to knockdown the endogenous Mps1 protein, followed by Western blot to detect Mps1 and p-ERK expression. Meanwhile, melanoma cells harboring BRAFV600E genotype were infected with pBabe-puro-GFP-Mps1 and Western blot was performed to detect Mps1 and p-ERK expression. RESULTS: In melanoma cells harboring BRAFWT genotype and transfected with pBabe-puro-GST-BRAF-WT and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels were notably reduced as compared to either negative control or empty vector. However, cells transfected with pBabe-puro-GST-BRAFV600E and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels did not change significantly compared with either negative control or empty vector. Knockout of Mps1 in BRAF wild-type cell lines led to an increased ERK activity. However, there was no significant change of ERK activity in BRAFV600E cell lines in the absence of Mps1. The expression of p-ERK in BRAFV600E mutant cell lines infected with pBabe-puro-GFP-Mps1-WT did not show any significant difference from either negative control or empty vector. CONCLUSIONS: Based on these findings, it suggests that there exists an auto-regulatory negative feedback loop between the Mps1 kinase and BRAFWT/ERK signaling. Oncogenic BRAFV600E abrogates the regulatory negative feedback loop of Mps1 on the MAPK pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Línea Celular Tumoral , Humanos , Melanoma/genética , Mutación , Fenotipo , Transducción de Señal , Transfección
9.
Int J Biol Macromol ; 266(Pt 2): 131259, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574937

RESUMEN

This study presents an alginate-collagen interpenetrating network (IPN) matrix of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation. The resulting matrix closely mimics the physiological and pathological stiffness range of the chondrocyte pericellular matrix (PCM). Chondrocytes were cultured within three-dimensional (3D) alginate-collagen IPN matrices with varying stiffness, namely Firm, Medium, and Soft. Alginate lyase was introduced to study the effects of the changes in stiffness of the Firm on chondrocyte response by in situ softening. The developed alginate-collagen IPN matrix displayed good cell-biocompatibility. Compared with stiffer tissue culture plastic (TCP), chondrocytes grown within Firm displayed a stabilized differentiated phenotype characterized by higher expression levels of aggrecan, collagen II, and SOX-9. Moreover, the developed alginate-collagen IPN matrix exhibited a gradually increased percentage of propidium iodide (PI)-positive dead cells with decreasing stiffness. Softer matrices directed cells towards higher proliferation rates and spherical morphologies while stimulating chondrocyte cluster formation. Furthermore, reducing Firm stiffness by in situ softening decreased aggrecan expression, contributing to matrix degradation similar to that seen in osteoarthritis (OA). Hence, the 3D alginate-collagen IPN constructs hold significant potential for in vitro replicating PCM stiffness changes observed in OA cartilage.


Asunto(s)
Alginatos , Condrocitos , Colágeno , Osteoartritis , Alginatos/química , Condrocitos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Colágeno/metabolismo , Colágeno/química , Cartílago Articular/metabolismo , Cartílago Articular/patología , Hidrogeles/química , Animales , Humanos , Andamios del Tejido/química , Proliferación Celular , Células Cultivadas , Agrecanos/metabolismo , Agrecanos/genética , Ingeniería de Tejidos/métodos
10.
Heliyon ; 10(10): e30889, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770292

RESUMEN

Breast cancer is the most common cause of female morbidity and death worldwide. Compared with other cancers, early detection of breast cancer is more helpful to improve the prognosis of patients. In order to achieve early diagnosis and treatment, clinical treatment requires rapid and accurate diagnosis. Therefore, the development of an automatic detection system for breast cancer suitable for patient imaging is of great significance for assisting clinical treatment. Accurate classification of pathological images plays a key role in computer-aided medical diagnosis and prognosis. However, in the automatic recognition and classification methods of breast cancer pathological images, the scale information, the loss of image information caused by insufficient feature fusion, and the enormous structure of the model may lead to inaccurate or inefficient classification. To minimize the impact, we proposed a lightweight PCSAM-ResCBAM model based on two-stage convolutional neural network. The model included a Parallel Convolution Scale Attention Module network (PCSAM-Net) and a Residual Convolutional Block Attention Module network (ResCBAM-Net). The first-level convolutional network was built through a 4-layer PCSAM module to achieve prediction and classification of patches extracted from images. To optimize the network's ability to represent global features of images, we proposed a tiled feature fusion method to fuse patch features from the same image, and proposed a residual convolutional attention module. Based on the above, the second-level convolutional network was constructed to achieve predictive classification of images. We evaluated the performance of our proposed model on the ICIAR2018 dataset and the BreakHis dataset, respectively. Furthermore, through model ablation studies, we found that scale attention and dilated convolution play an important role in improving model performance. Our proposed model outperforms the existing state-of-the-art models on 200 × and 400 × magnification datasets with a maximum accuracy of 98.74 %.

11.
Front Public Health ; 11: 1296269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249420

RESUMEN

Introduction: In the wake of the COVID-19 outbreak, urban communities have emerged as the frontline defenders in epidemic prevention and control, providing the most effective means of curbing the spread of virus both inward and outward. This study attempts to explain the underlying factors and mechanisms that shape the community epidemic prevention and control capacity (CEPCC). Methods: We adopted a resilience-based perspective and drew on a sample of 20 exemplary anti-epidemic communities in China. By constructing an analytical framework and employing the fuzzy set qualitative comparative analysis method (fsQCA), we explored how four conditional variables-infrastructure completeness, community self-organizing ability, redundancy of community resources, and stability of regional economic development-and their various configurations impact the CEPCC. Results: Our findings reveal that the four conditional variables, when considered in isolation, cannot effectively enhance the CEPCC. Instead, four configuration pathways with mixed conditional variables exist. Notably, community self-organizing ability emerges as a vital condition for effectively strengthening the CEPCC. Discussion: This study identifies four pathways to improve the CEPCC and confirms the validity of the data results through case studies. Conclusions of this research contribute to a more nuanced understanding of the factors influencing the CEPCC, which can help communities to better plan and prepare for future epidemics and ensure better response and adaptation to the impacts of future emergencies.


Asunto(s)
COVID-19 , Epidemias , Humanos , Epidemias/prevención & control , China/epidemiología , Brotes de Enfermedades , COVID-19/epidemiología , COVID-19/prevención & control , Desarrollo Económico
12.
Artículo en Inglés | MEDLINE | ID: mdl-35886302

RESUMEN

Fiscal decentralization (FD), as an institutional arrangement for the fiscal division between central and local governments, gives local governments the enthusiasm and autonomy to provide public products and services. With the dominance of environmental governance, how local governments can avoid intergovernmental "race to the bottom" issues through green technology innovation (GTI) is a matter of regional green development and continuous improvement of atmospheric environmental quality. Based on a sample of 30 provinces in China from 2003 to 2018, this paper uses the spatial Durbin model (SDM) to examine the relationship between FD, GTI, and regional air pollution and explores their spatial spillover effect and regional heterogeneity from the perspective of intergovernmental competition. The results indicate that the FD and GTI in various provinces had significant and regionally differentiated inhibitory effects on local air pollution. In Western China, due to the regional competition among local governments in terms of economic development, economic development-oriented fiscal expenditures crowd out environmental governance-oriented fiscal expenditures, which has led to the consequence that FD can intensify local air pollution and has a positive spillover effect, but the demonstration effect of green technological innovation can well moderate the effect of FD on air pollution. FD in the eastern region has played a positive role in promoting regional air quality improvement. However, its green technological innovation has not played a positive role in reducing emissions, and it plays a significant negative regulatory role in the emission reduction effect led by FD. Finally, the article puts forward policy recommendations in terms of a fiscal decentralization system, green technological innovation, and performance evaluation mechanism.


Asunto(s)
Contaminación del Aire , Política Ambiental , China , Conservación de los Recursos Naturales , Desarrollo Económico , Contaminación Ambiental , Invenciones , Política
13.
Artículo en Inglés | MEDLINE | ID: mdl-35897297

RESUMEN

Achieving synergistic governance of air pollution treatment and greenhouse gas emission reduction is the way for the Chinese government to achieve green transformational development. Against this background, this paper takes the implementation of the carbon emissions trading system (ETS) as the breakthrough point, using the time-varying difference-in-differences (DID) model to explore the synergistic emission reduction effect of ETS on air pollution and carbon emissions and its mechanism. The results indicate that the implementation of ETS not only significantly reduces CO2 emissions but also synergistically achieves the reduction of air pollutants, and the synergistic emission reduction effect is mainly achieved through the synergistic reduction of SO2. Moreover, the emission reduction effect of ETS has economic and regional heterogeneity. On the one hand, the ETS has a more prominent carbon reduction effect in less developed provinces and cities and has a significant synergistic emission reduction effect on SO2 and PM2.5; on the other hand, the carbon emission reduction effect of ETS is more potent in Beijing, Hubei, and Shanghai, followed by Tianjin and Chongqing, and the weakest in Guangdong. In addition, through the analysis of the mediating effect, this paper finds that reducing energy consumption, optimizing the energy structure, and improving energy efficiency are effective ways for ETS to achieve synergistic emission reduction. This study provides valuable policy enlightenment for promoting the synergistic governance of pollution and carbon reduction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Carbono/análisis , China
14.
Front Pharmacol ; 13: 1082997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588710

RESUMEN

Adenosine A2A receptors (A2ARs) appear early in the retina during postnatal development, but the roles of the A2ARs in the morphogenesis of distinct types of retinal ganglion cells (RGCs) during postnatal development and neonatal inflammatory response remain undetermined. As the RGCs are rather heterogeneous in morphology and functions in the retina, here we resorted to the Thy1-YFPH transgenic mice and three-dimensional (3D) neuron reconstruction to investigate how A2ARs regulate the morphogenesis of three morphologically distinct types of RGCs (namely Type I, II, III) during postnatal development and neonatal inflammation. We found that the A2AR antagonist KW6002 did not change the proportion of the three RGC types during retinal development, but exerted a bidirectional effect on dendritic complexity of Type I and III RGCs and cell type-specifically altered their morphologies with decreased dendrite density of Type I, decreased the dendritic field area of Type II and III, increased dendrite density of Type III RGCs. Moreover, under neonatal inflammation condition, KW6002 specifically increased the proportion of Type I RGCs with enhanced the dendrite surface area and volume and the proportion of Type II RGCs with enlarged the soma area and perimeter. Thus, A2ARs exert distinct control of RGC morphologies to cell type-specifically fine-tune the RGC dendrites during normal development but to mainly suppress RGC soma and dendrite volume under neonatal inflammation.

15.
Biosensors (Basel) ; 11(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34356694

RESUMEN

Rapid quantification of nitrite (NO2-) in food, drink and body fluids is of significant importance for both food safety and point-of-care (POA) applications. However, conventional nitrite analytical methods are complicated, constrained to sample content, and time-consuming. Inspired by a nitrite-triggered surface plasmon-assisted catalysis (SPAC) reaction, a rapid point-of-care detection salivary nitrate was developed in this work. NO2- ions can trigger the rapid conversion of p-aminothiophenol (PATP) to p,p'-dimercaptozaobenzene (DMAB) on gold nanoparticles (GNPs) under light illumination, and the emerged new bands at ca. 1140, 1390, 1432 cm-1 originating from DMAB can be used to the quantification of nitrite. Meanwhile, to make the method entirely suitable for on-site fast screen or point-of-care application, the technique is needed to be further optimized. The calibration graph for nitrates was linear in the range of 1-100 µM with a correlation coefficient of 0.9579. The limit of detection was 1 µM. The facile method could lead to a further understanding of the progression and treatment of periodontitis and to guide professionals in planning on-site campaigns to effectively control periodontal diseases.


Asunto(s)
Técnicas Biosensibles , Nitritos/análisis , Sistemas de Atención de Punto , Saliva/química , Aminas , Compuestos de Anilina , Catálisis , Oro/química , Humanos , Nanopartículas del Metal/química , Espectrometría Raman , Compuestos de Sulfhidrilo , Resonancia por Plasmón de Superficie
16.
Neuropharmacology ; 200: 108806, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562441

RESUMEN

Synapse pruning is essential not only for the developmental establishment of synaptic connections in the brain but also for the pathogenesis of neurodevelopmental and neurodegenerative disorders. However, there are no effective pharmacological means to regulate synaptic pruning during early development. Using the eye-specific segregation of the dorsal lateral geniculate nucleus (dLGN) as a model of synaptic pruning coupled with adenosine A2A receptor (A2AR) antagonism and knockout, we demonstrated while genetic deletion of the A2AR throughout the development attenuated eye-specific segregation with the attenuated microglial phagocytosis at postnatal day 5 (P5), selective treatment with the A2AR antagonist KW6002 at P2-P4 facilitated synaptic pruning of visual pathway with microglial activation, increased lysosomal activity in microglia and increased microglial engulfment of retinal ganglion cell (RGC) inputs in the dLGN at P5 (but not P10). Furthermore, KW6002-mediated facilitation of synaptic pruning was activity-dependent since tetrodotoxin (TTX) treatment abolished the KW6002 facilitation. Moreover, the A2AR antagonist also modulated postsynaptic proteins and synaptic density at early postnatal stages as revealed by the reduced immunoreactivity of postsynaptic proteins (Homer1 and metabotropic glutamate receptor 5) and colocalization of presynaptic VGlut2 and postsynaptic Homer1 puncta in the dLGN. These findings suggest that A2AR can control pruning by multiple actions involving the retinal wave, microglia engulfment, and postsynaptic stability. Thus, A2AR antagonists may represent a novel pharmacological strategy to modulate microglia-mediated synaptic pruning and treatment of neurodevelopmental disorders associated with dysfunctional pruning.


Asunto(s)
Cuerpos Geniculados/efectos de los fármacos , Microglía/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Receptor de Adenosina A2A/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Proteínas de Andamiaje Homer/efectos de los fármacos , Ratones , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Purinas , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Tetrodotoxina/farmacología
17.
Oncol Lett ; 17(3): 2809-2817, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30854056

RESUMEN

Colorectal cancer (CRC) with the V600E mutation of B-Raf proto-oncogene serine/threonine kinase (BRAFV600E) mutation is insensitive to chemotherapy and is indicative of a poor patient prognosis. Although BRAF inhibitors have a marked effect on malignant melanoma harboring the BRAFV600E mutation, they have a limited effect on patients with CRC with the same BRAF mutation. A previous study identified a novel gene, monopolar spindle protein kinase 1 (Mps1), a downstream target of BRAFV600E only, rather than of wild-type BRAF as well, which contributes to tumorigenesis in melanoma. In the present study, the incidence of BRAFV600E in patients with CRC was identified and the correlation of Mps1, phospho-extracellular-signal-regulated kinase (p-ERK) and BRAFV600E was investigated. The results indicated that the mutation rate of BRAFV600E was 5.2% in CRC. Poorly differentiated tumors and mucinous tumors have a significantly higher incidence of BRAFV600E compared with well-differentiated tumors and non-mucinous tumors (P<0.05). Kaplan-Meier survival analysis indicated that the survival rate was markedly lower in patients with BRAFV600E compared with in patients with wild-type BRAF (BRAFWT). The expression of p-ERK and Mps1 in CRC with BRAFV600E was significantly higher compared with in CRC with BRAFWT (P<0.05), and their expression is associated with cancer classification, degree of differentiation and lymph node transfusion (P<0.05). In addition p-ERK expression was positively correlated with Mps1 expression, with a contingency coefficient of 0.679 (P=0.002). In conclusion, the results of the present study indicated that Mps1 was significantly associated with BRAFV600E/p-ERK and may serve a crucial function in the development of CRC. The results of the present study raise the possibility that targeting the oncogenic BRAF and Mps1, particularly when in conjunction, could provide promising therapeutic opportunities for the treatment of CRC.

18.
J Agric Food Chem ; 66(26): 6525-6543, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28920678

RESUMEN

Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.


Asunto(s)
Análisis de los Alimentos/instrumentación , Contaminación de Alimentos/análisis , Espectrometría Raman/instrumentación , Diseño de Equipo , Análisis de los Alimentos/métodos , Sensibilidad y Especificidad , Espectrometría Raman/métodos
19.
Oncol Lett ; 15(4): 5433-5442, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29552184

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. γδ T cells have been revealed to be promising candidates for immunotherapy in patients with HCC. However, the use of these cells in clinical practice has been demonstrated to be challenging. In the present study, γδ T cells isolated from the peripheral blood of patients with HCC (n=83) and healthy donors (n=15) were characterized. Flow cytometry was used to analyze the proportion, phenotype, tumor-killing capacity and cytokine secretion of regulatory T cells (Tregs) and γδ T17 cells in peripheral blood samples prior to and following amplification. Interleukin (IL)-17A levels in the supernatant was analyzed using an ELISA on days 3, 7, 10 and 14. The in vitro cytotoxicity of γδ T cells was measured using an MTT assay. It was revealed that zoledronate with IL-2 may efficiently expand γδ T cells sourced from the peripheral blood of patients with HCC. The amplification capacity of γδ T cells was associated with the clinicopathological characteristics of patients (clinical stage, levels of AFP and albumin, duration of disease, size and number of tumors, numbers of Tregs and γδ T17 cells, and levels of IL-17A). The proportion of γδ T cells positive for interferon-γ, tumor necrosis factor-α, granzyme B, perforin, and lysosome-associated membrane protein 1 was almost unchanged prior to and following amplification. Following amplification, the in vitro cytotoxicity of γδ T cells also remained unchanged. γδ T17 cells, Tregs and IL-17A levels were not altered during amplification. In summary, following in vitro amplification, circulating γδ T cells were revealed to possess features that may make them suitable for immunotherapy for HCC without increasing immunosuppressive factors. However, immunotherapy should be individualized according to the clinicopathological features of patients.

20.
Stem Cell Res Ther ; 9(1): 200, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021628

RESUMEN

BACKGROUND: Male germline stem cells (mGSCs) offer great promise in regenerative medicine and animal breeding due to their capacity to maintain self-renewal and to transmit genetic information to the next generation following spermatogenesis. Human testis-derived embryonic stem cell-like cells have been shown to possess potential of mesenchymal progenitors, but there remains confusion about the characteristics and origin of porcine testis-derived stem cells. METHODS: Porcine testis-derived stem cells were obtained from primary testicular cultures of 5-day old piglets, and selectively expanded using culture conditions for long-term culture and induction differentiation. The stem cell properties of porcine testis-derived stem cells were subsequently assessed by determining the expression of pluripotency-associated markers, alkaline phosphatase (AP) activity, and capacity for sperm and multilineage differentiation in vitro. The gene expression profile was compared via microarray analysis. RESULTS: We identified two different types of testis-derived stem cells (termed as C1 and C2 here) during porcine testicular cell culture. The gene expression microarray analysis showed that the transcriptome profile of C1 and C2 differed significantly from each other. The C1 appeared to be morphologically similar to the previously described mouse mGSCs, expressed pluripotency- and germ cell-associated markers, maintained the paternal imprinted pattern of H19, displayed alkaline phosphatase activity, and could differentiate into sperm. Together, these data suggest that C1 represent the porcine mGSC population. Conversely, the C2 appeared similar to the previously described porcine mGSCs with three-dimensional morphology, abundantly expressed Leydig cell lineage and mesenchymal cell-specific markers, and could differentiate into testosterone-producing Leydig cells, suggesting that they are progenitor Leydig cells (PLCs). CONCLUSION: Collectively, we have established the expected characteristics and markers of authentic porcine mGSCs (C1). We found for the first time that, the C2, equivalent to previously claimed porcine mGSCs, are actually progenitor Leydig cells (PLCs). These findings provide new insights into the discrepancies among previous reports and future identification and analyses of testis-derived stem cells.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Testículo/metabolismo , Células Madre Germinales Adultas , Animales , Diferenciación Celular , Humanos , Masculino , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA