Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 152(5): 1037-50, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452852

RESUMEN

Although somatic cell reprogramming to generate inducible pluripotent stem cells (iPSCs) is associated with profound epigenetic changes, the roles and mechanisms of epigenetic factors in this process remain poorly understood. Here, we identify Jmjd3 as a potent negative regulator of reprogramming. Jmjd3-deficient MEFs produced significantly more iPSC colonies than did wild-type cells, whereas ectopic expression of Jmjd3 markedly inhibited reprogramming. We show that the inhibitory effects of Jmjd3 are produced through both histone demethylase-dependent and -independent pathways. The latter pathway involves Jmjd3 targeting of PHF20 for ubiquitination and degradation via recruitment of an E3 ligase, Trim26. Importantly, PHF20-deficient MEFs could not be converted to fully reprogrammed iPSCs, even with knockdown of Jmjd3, Ink4a, or p21, indicating that PHF20 is required for reprogramming. Our findings demonstrate, to the best of our knowledge, a previously unrecognized role of Jmjd3 in cellular reprogramming and provide molecular insight into the mechanisms by which the Jmjd3-PHF20 axis controls this process.


Asunto(s)
Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Unión al ADN , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Cinética , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Transcripción , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Regulación hacia Arriba
2.
J Biol Chem ; 300(3): 105667, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272228

RESUMEN

The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Enfermedad de Parkinson/metabolismo , Separación de Fases , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Factores de Transcripción , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Células HeLa , Electricidad Estática
3.
J Biol Chem ; 299(2): 102857, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592929

RESUMEN

Cu/Zn superoxide dismutase 1 (SOD1) has a high propensity to misfold and form abnormal aggregates when it is subjected to oxidative stress or carries mutations associated with amyotrophic lateral sclerosis. However, the transition from functional soluble SOD1 protein to aggregated SOD1 protein is not completely clear. Here, we propose that liquid-liquid phase separation (LLPS) represents a biophysical process that converts soluble SOD1 into aggregated SOD1. We determined that SOD1 undergoes LLPS in vitro and cells under oxidative stress. Abnormal oxidation of SOD1 induces maturation of droplets formed by LLPS, eventually leading to protein aggregation and fibrosis, and involves residues Cys111 and Trp32. Additionally, we found that pathological mutations in SOD1 associated with ALS alter the morphology and material state of the droplets and promote the transformation of SOD1 to solid-like oligomers which are toxic to nerve cells. Furthermore, the fibrous aggregates formed by both pathways have a concentration-dependent toxicity effect on nerve cells. Thus, these combined results strongly indicate that LLPS may play a major role in pathological SOD1 aggregation, contributing to pathogenesis in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa-1 , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Mutación , Pliegue de Proteína , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Transición de Fase
4.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598012

RESUMEN

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Asunto(s)
Arabidopsis , MicroARNs , ARN Largo no Codificante , ARN Endógeno Competitivo , ARN Largo no Codificante/genética , Ácido Abscísico/farmacología , Arabidopsis/genética , Manitol , MicroARNs/genética , ARN Mensajero , Triticum/genética , Ceras
5.
Small ; 20(9): e2306698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37840390

RESUMEN

Hierarchical architecture engineering is desirable in integrating the physical-chemical behaviors and macroscopic properties of materials, which present great potential for developing multifunctional microwave absorption materials. However, the intrinsic mechanisms and correlation conditions among cellular units have not been revealed, which are insufficient to maximize the fusion of superior microwave absorption (MA) and derived multifunctionality. Herein, based on three models (disordered structure, porous structure, lamellar structure) of structural units, a range of MXene-aerogels with variable constructions are fabricated by a top-down ice template method. The aerogel with lamellar structure with a density of only 0.015 g cm-3 exhibits the best MA performance (minimum reflection loss: -53.87 dB, effective absorption bandwidth:6.84 GHz) at a 6 wt.% filling ratio, which is preferred over alternative aerogels with variable configurations. This work elucidates the relationship between the hierarchical architecture and the superior MA performance. Further, the MXene/CoNi Composite aerogel with lamellar structure exhibits >90% compression stretch after 1000 cycles, excellent compressive properties, and elasticity, as well as high hydrophobicity and thermal insulation properties, broadening the versatility of MXene-based aerogel applications. In short, through precise microstructure design, this work provides a conceptually novel strategy to realize the integration of electromagnetic stealth, thermal insulation, and load-bearing capability simultaneously.

6.
Small ; : e2310939, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453670

RESUMEN

Nickel oxide (NiOx ) is commonly used as a holetransporting material (HTM) in p-i-n perovskite solar cells. However, the weak chemical interaction between the NiOx and CH3 NH3 PbI3 (MAPbI3 ) interface results in poor crystallinity, ineffective hole extraction, and enhanced carrier recombination, which are the leading causes for the limited stability and power conversion efficiency (PCE). Herein, two HTMs, TRUX-D1 (N2 ,N7 ,N12 -tris(9,9-dimethyl-9H-fluoren-2-yl)-5,5,10,10,15,15-hexaheptyl-N2 ,N7 ,N12 -tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine) and TRUX-D2 (5,5,10,10,15,15-hexaheptyl-N2 ,N7 ,N12 -tris(4-methoxyphenyl)-N2 ,N7 ,N12 -tris(10-methyl-10H-phenothiazin-3-yl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine), are designed with a rigid planar C3 symmetry truxene core integrated with electron-donating amino groups at peripheral positions. The TRUX-D molecules are employed as effective interfacial layer (IFL) materials between the NiOx and MAPbI3 interface. The incorporation of truxene-based IFLs improves the quality of perovskite crystallinity, minimizes nonradiative recombination, and accelerates charge extraction which has been confirmed by various characterization techniques. As a result, the TRUX-D1 exhibits a maximum PCE of up to 20.8% with an impressive long-term stability. The unencapsulated device retains 98% of their initial performance following 210 days of aging in a glove box and 75.5% for the device after 80 days under ambient air condition with humidity over 40% at 25 °C.

7.
Phys Rev Lett ; 132(5): 056702, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364119

RESUMEN

We report a giant hysteretic spin Seebeck effect (SSE) anomaly with a sign reversal at magnetic fields much stronger than the coercive field in a (001)-oriented Tb_{3}Fe_{5}O_{12} film. The high-field SSE enhancement reaches 4200% at approximately 105 K over its weak-field value and presents a nonmonotonic dependence on temperature. The unexpected high-field hysteresis of SSE is found to be associated with a magnetic transition of double-umbrella spin texture in TbIG. Nearly parallel dispersion curves of magnons and acoustic phonons around this neoteric transition are supported by theoretical calculations, leading to a high density of field-tuned magnon polarons and consequently an extraordinarily large SSE. Our study provides insight into the evolution of magnon dispersions of double-umbrella TbIG and could potentially boost the efficiency of magnon-polarons SSE devices.

8.
Cerebellum ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558026

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.

9.
Cell Commun Signal ; 22(1): 343, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907279

RESUMEN

Mitochondria are central to endothelial cell activation and angiogenesis, with the RNA polymerase mitochondrial (POLRMT) serving as a key protein in regulating mitochondrial transcription and oxidative phosphorylation. In our study, we examined the impact of POLRMT on angiogenesis and found that its silencing or knockout (KO) in human umbilical vein endothelial cells (HUVECs) and other endothelial cells resulted in robust anti-angiogenic effects, impeding cell proliferation, migration, and capillary tube formation. Depletion of POLRMT led to impaired mitochondrial function, characterized by mitochondrial depolarization, oxidative stress, lipid oxidation, DNA damage, and reduced ATP production, along with significant apoptosis activation. Conversely, overexpressing POLRMT promoted angiogenic activity in the endothelial cells. In vivo experiments demonstrated that endothelial knockdown of POLRMT, by intravitreous injection of endothelial specific POLRMT shRNA adeno-associated virus, inhibited retinal angiogenesis. In addition, inhibiting POLRMT with a first-in-class inhibitor IMT1 exerted significant anti-angiogenic impact in vitro and in vivo. Significantly elevated expression of POLRMT was observed in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. POLRMT endothelial knockdown inhibited pathological retinal angiogenesis and mitigated retinal ganglion cell (RGC) degeneration in DR mice. At last, POLRMT expression exhibited a substantial increase in the retinal proliferative membrane tissues of human DR patients. These findings collectively establish the indispensable role of POLRMT in angiogenesis, both in vitro and in vivo.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Células Endoteliales de la Vena Umbilical Humana , Mitocondrias , Humanos , Animales , Ratones , Mitocondrias/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Ratones Endogámicos C57BL , Proliferación Celular , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Masculino , Neovascularización Fisiológica/genética , Movimiento Celular , Apoptosis , Angiogénesis
10.
Biomacromolecules ; 25(7): 4374-4383, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38825770

RESUMEN

Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.


Asunto(s)
Proteolisis , ARN Mensajero , Proteolisis/efectos de los fármacos , Humanos , ARN Mensajero/genética , Nanopartículas/química , Lípidos/química , Células HeLa , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Separación de Fases , Liposomas
11.
Acta Pharmacol Sin ; 45(6): 1130-1141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38195693

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.


Asunto(s)
Adenosina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , ARN/metabolismo , ARN/genética
12.
World J Surg ; 48(2): 446-455, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38686786

RESUMEN

BACKGROUND: The diseased bile duct in bilobar congenital biliary dilatation is extensive and often requires major hepatectomy or liver transplantation associated with a higher risk. We aimed to evaluate the safety and benefit of modified mesohepatectomy, in comparison with trisectionectomy, to treat bilobar congenital biliary dilatation. METHODS: This study included 28 patients with type IV and V bilobar congenital biliary dilatation. An innovative mesohepatectomy comprising the hepatectomy technique beyond the P/U point and bile duct shaping was applied to 14 patients to address the extensively diseased bile duct and difficulty in hepaticojejunostomy. Another 14 patients received trisectionectomy. The perioperative and long-term outcomes of these patients were compared. RESULTS: The ratio of residual liver volume to standard liver volume in the mesohepatectomy group was higher (78.68% vs. 40.90%, p = 0.005), while the resection rate of the liver parenchyma was lower (28.25% vs. 63.97%, p = 0.000), than that in trisectionectomy group. The mesohepatectomy group had a lower severe complication (>Clavein III, 0% vs. 57.70%, p = 0.019) and incidence of posthepatectomy liver failure (7.14% vs. 42.86%, p = 0.038). No significant difference was observed in blood loss and bile leakage (p > 0.05). All the patients in the mesohepatectomy group achieved optimal results in the long-term follow-up. CONCLUSIONS: mesohepatectomy provides an efficient treatment option for bilobar congenital biliary dilatation and can achieve radical resection, retain more liver parenchyma, and reduce the difficulty of hepaticojejunostomy, especially for patients that are not eligible for major hepatectomy and liver transplantation.


Asunto(s)
Hepatectomía , Humanos , Hepatectomía/métodos , Masculino , Femenino , Resultado del Tratamiento , Estudios Retrospectivos , Dilatación Patológica/cirugía , Lactante , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Preescolar
13.
PLoS Genet ; 17(11): e1009898, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784357

RESUMEN

Increasing evidence points to the tight relationship between alternative splicing (AS) and the salt stress response in plants. However, the mechanisms linking these two phenomena remain unclear. In this study, we have found that Salt-Responsive Alternatively Spliced gene 1 (SRAS1), encoding a RING-Type E3 ligase, generates two splicing variants: SRAS1.1 and SRAS1.2, which exhibit opposing responses to salt stress. The salt stress-responsive AS event resulted in greater accumulation of SRAS1.1 and a lower level of SRAS1.2. Comprehensive phenotype analysis showed that overexpression of SRAS1.1 made the plants more tolerant to salt stress, whereas overexpression of SRAS1.2 made them more sensitive. In addition, we successfully identified the COP9 signalosome 5A (CSN5A) as the target of SRAS1. CSN5A is an essential player in the regulation of plant development and stress. The full-length SRAS1.1 promoted degradation of CSN5A by the 26S proteasome. By contrast, SRAS1.2 protected CSN5A by competing with SRAS1.1 on the same binding site. Thus, the salt stress-triggered AS controls the ratio of SRAS1.1/SRAS1.2 and switches on and off the degradation of CSN5A to balance the plant development and salt tolerance. Together, these results provide insights that salt-responsive AS acts as post-transcriptional regulation in mediating the function of E3 ligase.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Complejo del Señalosoma COP9/genética , Estrés Salino , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Isoformas de Proteínas/genética , Salinidad , Ubiquitina-Proteína Ligasas/genética
14.
J Cell Mol Med ; 27(16): 2372-2384, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400979

RESUMEN

Metastasis is the primary cause of death of hepatocellular carcinoma (HCC), while the mechanism underlying this severe disease remains largely unclear. The Kruppel-like factor (KLF) family is one of the largest transcription factor families that control multiple physiologic and pathologic processes by governing the cellular transcriptome. To identify metastatic regulators of HCC, we conducted gene expression profiling on the MHCC97 cell series, a set of subclones of the original MHCC97 that was established by in vivo metastasis selection therefore harbouring differential metastatic capacities. We found that the expression of KLF9, a member of the KLF family, was dramatically repressed in the metastatic progeny clone of the MHCC97 cells. Functional studies revealed overexpression of KLF9 suppressed HCC migration in vitro and metastasis in vivo, while knockdown of KLF9 was sufficient to promote cell migration and metastasis accordingly. Mechanistically, we found the expression of KLF9 can reverse the pro-metastatic epithelial-mesenchymal transition (EMT) program via direct binding to the promoter regions of essential mesenchymal genes, thus repressing their expression. Interestingly, we further revealed that KLF9 was, in turn, directly suppressed by a mesenchymal transcription factor Slug, suggesting an intriguing negative feedback loop between KLF9 and the EMT program. Using clinical samples, we found that KLF9 was not only downregulated in HCC tissue compared to its normal counterparts but also further reduced in the HCC samples of whom had developed metastatic lesions. Together, we established a critical transcription factor that represses HCC metastasis, which is clinically and mechanically significant in HCC therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/metabolismo
15.
J Neuroinflammation ; 20(1): 82, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944982

RESUMEN

BACKGROUND: Central post-stroke pain (CPSP) is an intractable and disabling central neuropathic pain that severely affects patients' lives, well-being, and socialization abilities. However, CPSP has been poorly studied mechanistically and its treatment remains challenging. Here, we used a rat model of CPSP induced by thalamic hemorrhage to investigate its underlying mechanisms and the effect of stellate ganglion block (SGB) on CPSP and emotional comorbidities. METHODS: Thalamic hemorrhage was produced by injecting collagenase IV into the ventral-posterolateral nucleus (VPL) of the right thalamus. The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Behavioral tests were carried out to examine depressive and anxiety-like behaviors including the open field test (OFT), elevated plus maze test (EPMT), novelty-suppressed feeding test (NSFT), and forced swim test (FST). The peri-thalamic lesion tissues were collected for immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA). Genetic knockdown of thalamic hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) with microinjection of HIF-1α siRNA and NLRP3 siRNA into the VPL of thalamus were performed 3 days before collagenase injection into the same regions. Microinjection of lificiguat (YC-1) and MCC950 into the VPL of thalamus were administrated 30 min before the collagenase injection in order to inhibited HIF-1α and NLRP3 pharmacologically. Repetitive right SGB was performed daily for 5 days and laser speckle contrast imaging (LSCI) was conducted to examine cerebral blood flow. RESULTS: Thalamic hemorrhage caused persistent mechanical allodynia and anxiety- and depression-like behaviors. Accompanying the persistent mechanical allodynia, the expression of HIF-1α and NLRP3, as well as the activities of microglia and astrocytes in the peri-thalamic lesion sites, were significantly increased. Genetic knockdown of thalamic HIF-1α and NLRP3 significantly attenuated mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. Further studies revealed that intra-thalamic injection of YC-1, or MCC950 significantly suppressed the activation of microglia and astrocytes, the release of pro-inflammatory cytokines, the upregulation of malondialdehyde (MDA), and the downregulation of superoxide dismutase (SOD), as well as mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. In addition, repetitive ipsilateral SGB significantly restored the upregulated HIF-1α/NLRP3 signaling and the hyperactivated microglia and astrocytes following thalamic hemorrhage. The enhanced expression of pro-inflammatory cytokines and the oxidative stress in the peri-thalamic lesion sites were also reversed by SGB. Moreover, LSCI showed that repetitive SGB significantly increased cerebral blood flow following thalamic hemorrhage. Most strikingly, SGB not only prevented, but also reversed the development of mechanical allodynia and anxiety- and depression-like behaviors induced by thalamic hemorrhage. However, pharmacological activation of thalamic HIF-1α and NLRP3 with specific agonists significantly eliminated the therapeutic effects of SGB on mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. CONCLUSION: This study demonstrated for the first time that SGB could improve CPSP with comorbid anxiety and depression by increasing cerebral blood flow and inhibiting HIF-1α/NLRP3 inflammatory signaling.


Asunto(s)
Accidente Cerebrovascular Hemorrágico , Neuralgia , Accidente Cerebrovascular , Ratas , Animales , Hiperalgesia/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Accidente Cerebrovascular Hemorrágico/complicaciones , Accidente Cerebrovascular Hemorrágico/patología , Depresión/etiología , Depresión/terapia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ganglio Estrellado/metabolismo , Ganglio Estrellado/patología , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Tálamo/metabolismo , Hemorragia Cerebral/patología , Neuralgia/metabolismo , Ansiedad , Colagenasas/metabolismo , Citocinas/metabolismo
16.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34180984

RESUMEN

Targeting the interaction between severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)-receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) is believed to be an effective strategy for drug design to inhibit the infection of SARS-CoV-2. Herein, several ultrashort peptidase inhibitors against the RBD-ACE2 interaction were obtained by a computer-aided approach based on the RBD-binding residues on the protease domain (PD) of ACE2. The designed peptides were tested on a model coronavirus GX_P2V, which has 92.2 and 86% amino acid identity to the SARS-CoV-2 spike protein and RBD, respectively. Molecular dynamics simulations and binding free energy analysis predicted a potential binding pocket on the RBD of the spike protein, and this was confirmed by the specifically designed peptides SI5α and SI5α-b. They have only seven residues, showing potent antiviral activity and low cytotoxicity. Enzyme-linked immunosorbent assay result also confirmed their inhibitory ability against the RBD-ACE2 interaction. The ultrashort peptides are promising precursor molecules for the drug development of Corona Virus Disease 2019, and the novel binding pocket on the RBD may be helpful for the design of RBD inhibitors or antibodies against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Tratamiento Farmacológico de COVID-19 , Péptidos/química , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Antivirales/química , Sitios de Unión/efectos de los fármacos , COVID-19/genética , COVID-19/virología , Diseño de Fármacos , Humanos , Simulación de Dinámica Molecular , Péptidos/genética , Péptidos/uso terapéutico , Unión Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
17.
New Phytol ; 240(2): 710-726, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37547968

RESUMEN

MicroRNAs (miRNAs) play crucial roles in regulating plant development and stress responses. However, the functions and mechanism of intronic miRNAs in plants are poorly understood. This study reports a stress-responsive RNA splicing mechanism for intronic miR400 production, whereby miR400 modulates reactive oxygen species (ROS) accumulation and improves plant tolerance by downregulating its target expression. To monitor the intron splicing events, we used an intronic miR400 splicing-dependent luciferase transgenic line. Luciferase activity was observed to decrease after high cadmium concentration treatment due to the retention of the miR400-containing intron, which inhibited the production of mature miR400. Furthermore, we demonstrated that under Cd treatments, Pentatricopeptide Repeat Protein 1 (PPR1), the target of miR400, acts as a positive regulator by inducing ROS accumulation. Ppr1 mutation affected the Complex III activity in the electron transport chain and RNA editing of the mitochondrial gene ccmB. This study illustrates intron splicing as a key step in intronic miR400 production and highlights the function of intronic miRNAs as a 'signal transducer' in enhancing plant stress tolerance.


Asunto(s)
Arabidopsis , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Intrones/genética , Empalme del ARN/genética , Regulación de la Expresión Génica de las Plantas
18.
Mol Psychiatry ; 27(2): 896-906, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34697452

RESUMEN

Neuroplasticity in the medial prefrontal cortex (mPFC) is essential for fear extinction, the process of which forms the basis of the general therapeutic process used to treat human fear disorders. However, the underlying molecules and local circuit elements controlling neuronal activity and concomitant induction of plasticity remain unclear. Here we show that sustained plasticity of the parvalbumin (PV) neuronal network in the infralimbic (IL) mPFC is required for fear extinction in adult male mice and identify the involvement of neuregulin 1-ErbB4 signalling in PV network plasticity-mediated fear extinction. Moreover, regulation of fear extinction by basal medial amygdala (BMA)-projecting IL neurons is dependent on PV network configuration. Together, these results uncover the local molecular circuit mechanisms underlying mPFC-mediated top-down control of fear extinction, suggesting alterative therapeutic approaches to treat fear disorders.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Neurregulina-1 , Plasticidad Neuronal/fisiología , Parvalbúminas , Corteza Prefrontal/fisiología , Receptor ErbB-4
19.
Pharmacol Res ; 187: 106606, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516884

RESUMEN

Epidermal growth factor receptor variant III (EGFRvIII) is a mutant isoform of EGFR with a deletion of exons 2-7 making it insensitive to EGF stimulation and downstream signal constitutive activation. However, the mechanism underlying the stability of EGFRvIII remains unclear. Based on CRISPR-Cas9 library screening, we found that mucin1 (MUC1) is essential for EGFRvIII glioma cell survival and temozolomide (TMZ) resistance. We revealed that MUC1-C was upregulated in EGFRvIII-positive cells, where it enhanced the stability of EGFRvIII. Knockdown of MUC1-C increased the colocalization of EGFRvIII and lysosomes. Upregulation of MUC1 occurred in an NF-κB dependent manner, and inhibition of the NF-κB pathway could interrupt the EGFRvIII-MUC1 feedback loop by inhibiting MUC1-C. In a previous report, we identified AC1Q3QWB (AQB), a small molecule that could inhibit the phosphorylation of NF-κB. By screening the structural analogs of AQB, we obtained EPIC-1027, which could inhibit the NF-κB pathway more effectively. EPIC-1027 disrupted the EGFRvIII-MUC1-C positive feedback loop in vitro and in vivo, inhibited glioma progression, and promoted sensitization to TMZ. In conclusion, we revealed the pivotal role of MUC1-C in stabilizing EGFRvIII in glioblastoma (GBM) and identified a small molecule, EPIC-1027, with great potential in GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , FN-kappa B/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Mucina-1/genética
20.
Biotechnol Appl Biochem ; 70(6): 1806-1816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37278163

RESUMEN

Rhamnolipid, as a low-toxic, biodegradable and environmentally friendly biosurfactant, has broad application prospects in many industries. However, the quantitative determination of rhamnolipid is still a challenging task. Here, a new sensitive method for the quantitative analysis of rhamnolipid based on a simple derivatization reaction was developed. In this study, 3-[3'-(l-rhamnopyranosyloxy) decanoyloxy] decanoic acid (Rha-C10-C10) and 3-[3'-(2'-O-α-l-rhamnopyranosyloxy) decanoyloxy] decanoic acid (Rha-Rha-C10-C10) were utilized as the representative rhamnolipids. Liquid chromatography-mass spectrometry and high-performance liquid chromatography-ultra violet results showed that these two compounds were successfully labeled with 1 N1-(4-nitrophenyl)-1,2-ethylenediamine. There was an excellent linear relationship between rhamnolipid concentration and peak area of labeled rhamnolipid. The detection limits of the Rha-C10-C10 and Rha-Rha-C10-C10 were 0.018 mg/L (36 nmol/L) and 0.014 mg/L (22 nmol/L), respectively. The established amidation method was suitable for the accurate analysis of rhamnolipids in the biotechnological process. The method had good reproducibility with the relative standard deviation of 0.96% and 0.79%, respectively, and sufficient accuracy with a recovery of 96%-100%. This method was applied to quantitative analysis of 10 rhamnolipid homologs metabolized by Pseudomonas aeruginosa LJ-8. The single labeling method was used for the quantitative analysis of multiple components, which provided an effective method for the quality evaluation of other glycolipids with carboxyl groups.


Asunto(s)
Biotecnología , Glucolípidos , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Glucolípidos/metabolismo , Pseudomonas aeruginosa , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA