Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143050

RESUMEN

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Asunto(s)
Mitocondrias , Mitofagia , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neuronas/metabolismo , Mitocondrias/metabolismo , Ratones , Humanos , Fosforilación Oxidativa , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Neurogénesis
2.
World J Clin Cases ; 11(12): 2832-2838, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37214582

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection is a global problem, causing significant morbidity and mortality. Furazolidone is recommended to eradicate H. pylori infections in China owing to the highly associated antibiotic resistance. CASE SUMMARY: This article presents two cases of lung injury caused by furazolidone treatment of H. pylori infection and the relevant literature review. Two patients developed symptoms, including fever, cough, and fatigue after receiving a course of furazolidone for H. pylori infection. Chest computed tomography showed bilateral interstitial infiltrates. Laboratory studies revealed elevated blood eosinophil count. After discontinuing furazolidone with or without the use of corticosteroids, the symptoms improved rapidly. A PubMed database literature search revealed three reported cases of lung injury suggestive of furazolidone-induced pulmonary toxicity. CONCLUSION: Clinicians should be aware of the side effects associated with the administration of furazolidone to eradicate H. pylori infection.

3.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767472

RESUMEN

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA