RESUMEN
Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.
Asunto(s)
Productos Biológicos , MicroARNs , Ácidos Ftálicos , Ácidos Ftálicos/toxicidad , Humanos , Animales , Plastificantes/toxicidad , Contaminantes Ambientales/toxicidadRESUMEN
Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.
Asunto(s)
Apoptosis , Neoplasias de la Boca , Humanos , Proliferación Celular , Línea Celular Tumoral , Neoplasias de la Boca/metabolismoRESUMEN
Antioral cancer drugs need a greater antiproliferative impact on cancer than on normal cells. Demethoxymurrapanine (DEMU) inhibits proliferation in several cancer cells, but an in-depth investigation was necessary. This study evaluated the proliferation-modulating effects of DEMU, focusing on oral cancer and normal cells. DEMU (0, 2, 3, and 4 µg/mL) at 48 h treatments inhibited the proliferation of oral cancer cells (the cell viability (%) for Ca9-22 cells was 100.0 ± 2.2, 75.4 ± 5.6, 26.0 ± 3.8, and 15.4 ± 1.4, and for CAL 27 cells was 100.0 ± 9.4, 77.2 ± 5.9, 57.4 ± 10.7, and 27.1 ± 1.1) more strongly than that of normal cells (the cell viability (%) for S-G cells was 100.0 ± 6.6, 91.0 ± 4.6, 95.0 ± 2.6, and 95.8 ± 5.5), although this was blocked by the antioxidant N-acetylcysteine. The presence of oxidative stress was evidenced by the increase of reactive oxygen species and mitochondrial superoxide and the downregulation of the cellular antioxidant glutathione in oral cancer cells, but these changes were minor in normal cells. DEMU also caused greater induction of the subG1 phase, extrinsic and intrinsic apoptosis (annexin V and caspases 3, 8, and 9), and DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer than in normal cells. N-acetylcysteine attenuated all these DEMU-induced changes. Together, these data demonstrate the preferential antiproliferative function of DEMU in oral cancer cells, with the preferential induction of oxidative stress, apoptosis, and DNA damage in these cancer cells, and low cytotoxicity toward normal cells.
Asunto(s)
Alcaloides , Neoplasias de la Boca , Humanos , Antioxidantes/farmacología , Acetilcisteína/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Proliferación Celular , Alcaloides/farmacología , Alcaloides/uso terapéutico , Indoles/farmacología , Línea Celular Tumoral , Daño del ADNRESUMEN
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Asunto(s)
Exosomas , MicroARNs , MicroARNs/genética , Exosomas/genéticaRESUMEN
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Asunto(s)
Productos Biológicos , MicroARNs , Neoplasias , Humanos , Productos Biológicos/farmacología , MicroARNs/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genéticaRESUMEN
Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.
Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias de la Boca , Estrés Oxidativo , Humanos , Apoptosis , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Ginger-derived compounds are abundant sources of anticancer natural products. However, the anticancer effects of (E)-3-hydroxy-1-(4'-hydroxy-3',5'-dimethoxyphenyl)-tetradecan-6-en-5-one (3HDT) have not been examined. This study aims to assess the antiproliferation ability of 3HDT on triple-negative breast cancer (TNBC) cells. 3HDT showed dose-responsive antiproliferation for TNBC cells (HCC1937 and Hs578T). Moreover, 3HDT exerted higher antiproliferation and apoptosis on TNBC cells than on normal cells (H184B5F5/M10). By examining reactive oxygen species, mitochondrial membrane potential, and glutathione, we found that 3HDT provided higher inductions for oxidative stress in TNBC cells compared with normal cells. Antiproliferation, oxidative stress, antioxidant signaling, and apoptosis were recovered by N-acetylcysteine, indicating that 3HDT preferentially induced oxidative-stress-mediated antiproliferation in TNBC cells but not in normal cells. Moreover, by examining γH2A histone family member X (γH2AX) and 8-hydroxy-2-deoxyguanosine, we found that 3HDT provided higher inductions for DNA damage, which was also reverted by N-acetylcysteine. In conclusion, 3HDT is an effective anticancer drug with preferential antiproliferation, oxidative stress, apoptosis, and DNA damage effects on TNBC cells.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Zingiber officinale , Humanos , Acetilcisteína/farmacología , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Daño del ADNRESUMEN
A series of 4-anilinoquinolinylchalcone derivatives were synthesized and evaluated for antiproliferative activities against the growth of human cancer cell lines (Huh-7 and MDA-MB-231) and normal lung cells (MRC-5). The results exhibited low cytotoxicity against human lung cells (MRC-5). Among them, (E)-3-{4-{[4-(benzyloxy)phenyl]amino}quinolin-2-yl}-1-(4-methoxyphenyl) prop-2-en-1-one (4a) was found to have the highest cytotoxicity in breast cancer cells and low cytotoxicity in normal cells. Compound 4a causes ATP depletion and apoptosis of breast cancer MDA-MB-231 cells and triggers reactive oxygen species (ROS)-dependent caspase 3/7 activation. In conclusion, it is worth studying 4-anilinoquinolinylchalcone derivatives further as new potential anticancer agents for the treatment of human cancers.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Especies Reactivas de Oxígeno/farmacología , Neoplasias de la Mama/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis , Relación Estructura-Actividad , Estructura MolecularRESUMEN
Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.
Asunto(s)
Neoplasias de la Mama , Endorribonucleasas , Humanos , Femenino , Endorribonucleasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Línea Celular TumoralRESUMEN
Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Daño del ADN , Proliferación Celular , Línea Celular Tumoral , Estrés Oxidativo , Apoptosis , Acetilcisteína/farmacologíaRESUMEN
The benzo-fused dioxabicyclo[3.3.1]nonane core is the central framework in several natural products. Using this core, we had developed a novel nitrated [6,6,6]tricycle-derived compound containing an n-butyloxy group, namely, SK2. The anticancer potential of SK2 was not assessed. This study aimed to determine the antiproliferative function and investigated possible mechanisms of SK2 acting on oral cancer cells. SK2 preferentially killed oral cancer cells but caused no harmful effect on non-malignant oral cells. After the SK2 exposure of oral cancer cells, cells in the sub-G1 phase accumulated. This apoptosis-like outcome of SK2 treatment was validated to be apoptosis via observing an increasing annexin V population. Mechanistically, apoptosis signalers such as pancaspase, caspases 8, caspase 9, and caspase 3 were activated by SK2 in oral cancer cells. SK2 induced oxidative-stress-associated changes. Furthermore, SK2 caused DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine). In conclusion, a novel nitrated [6,6,6]tricycle-derived compound, SK2, exhibits a preferential antiproliferative effect on oral cancer cells, accompanied by apoptosis, oxidative stress, and DNA damage.
Asunto(s)
NitratosRESUMEN
BACKGROUND: The main drawback of fat transfer breast augmentation is the need for multiple sessions of fat injection. For approximately 15 years, stem cells and the Brava device for breast expansion have been discussed and extensively investigated to address relevant challenges. However, the safety and effectiveness of autologous fat transfer as a single-session primary breast augmentation technique has not yet been standardized. OBJECTIVES: The aim of this study was to achieve mega volume fat breast augmentation in a single session by developing a "space-creating" approach that emphasizes the use of highly purified fat to achieve an optimized surgical outcome with large-volume breast augmentation. METHODS: Female patients who underwent aesthetic breast augmentation (October 2013-October 2020) involving the application of this space-creating technique for mega volume autologous fat transfer were retrospectively enrolled. Inclusion criteria were patients with hypomastia, breast asymmetry, and volume replacement following implant removal with BMI ≥18.5 kg/m2. After macrospace creation, highly purified fat was injected in several rounds during the procedure. A breast massage was performed between each stage (microspace creation). Breast circumference, nipple-inframammary fold distance, and cup size were recorded during 6 months of follow-up. RESULTS: Three hundred fifty-eight patients met the inclusion criteria. Average fat injection volumes of 510.9 mL in the right breast and 490.8 mL in the left breast resulted in at least a 2 cup size increase. The significant outcome remained stable at 6 months after surgery. CONCLUSIONS: The space-creating technique and the injection of highly purified fat achieves stable cosmetic outcomes of mega volume breast augmentation in a single session.
Asunto(s)
Tejido Adiposo , Mamoplastia , Tejido Adiposo/trasplante , Mama/diagnóstico por imagen , Mama/cirugía , Femenino , Humanos , Mamoplastia/efectos adversos , Mamoplastia/métodos , Estudios Retrospectivos , Expansión de Tejido/métodos , Trasplante AutólogoRESUMEN
Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.
RESUMEN
Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.
RESUMEN
Triple-negative breast cancer (TNBC) is characterized by the loss of expression of several biomarkers, which limits treatment strategies for the disease. In recent years, immunotherapy has shown promising results in the treatment of various tumors. Emerging evidence demonstrated that TNBC is an immune-activated cancer, suggesting that immunotherapy could be a feasible treatment option for TNBC. Cytokine-induced killer (CIK) cell therapy is considered as a potential treatment for cancer treatment. However, it is still not approved as a standard treatment in the clinical setting. Our previous study demonstrated that focal adhesion kinase (FAK) plays important role in regulating the sensitivity of TNBC cells to CIK cells. In this study, we further verify the role of FAK in regulating the immune response in vivo. Our in vitro study indicated that knockdown of FAK in TNBC cells or treat with the FAK inhibitor followed by co-culture with CIK cells induced more cell death than CIK cells treatment only. RNA-seq analysis indicated that suppression of FAK could affect several immune-related gene expressions in TNBC cells that affects the immune response in the tumor microenvironment of TNBC cells. The combination of FAK inhibitor and CIK cells significantly suppressed tumor growth than the treatment of FAK inhibitor or CIK cells alone in vivo. Our findings provide new insights into the cytotoxic effect of CIK cell therapy in TNBC treatment and indicate that the combination of CIK cell therapy with FAK inhibitors may be an alternative therapeutic strategy for patients with TNBC.
Asunto(s)
Antineoplásicos , Células Asesinas Inducidas por Citocinas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Antineoplásicos/uso terapéutico , Inmunoterapia/métodos , Inmunoterapia Adoptiva , Microambiente TumoralRESUMEN
Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative (SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment (UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment (20 J/m2 UVC or 10 µg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively. In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2 to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2'-deoxyguanosine in oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antiproliferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.
RESUMEN
Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S-G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.
RESUMEN
The critical factors for regulating cancer metabolism are oxidative stress and phosphoinositide-3-kinase/AKT serine-threonine kinase/mechanistic target of the rapamycin kinase (PI3K/AKT/mTOR). However, the metabolic impacts of oxidative stress and PI3K/AKT/mTOR on individual mechanisms such as glycolysis (Warburg effect), pentose phosphate pathway (PPP), fatty acid synthesis, tricarboxylic acid cycle (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS) are complicated. Therefore, this review summarizes the individual and interacting functions of oxidative stress and PI3K/AKT/mTOR on metabolism. Moreover, natural products providing oxidative stress and PI3K/AKT/mTOR modulating effects have anticancer potential. Using the example of brown algae-derived fucoidan, the roles of oxidative stress and PI3K/AKT/mTOR were summarized, although their potential functions within diverse metabolisms were rarely investigated. We propose a potential application that fucoidan may regulate oxidative stress and PI3K/AKT/mTOR signaling to modulate their associated metabolic regulations. This review sheds light on understanding the impacts of oxidative stress and PI3K/AKT/mTOR on metabolism and the future direction of metabolism-based cancer therapy of fucoidan.
RESUMEN
Physalis peruviana-derived physapruin A (PHA) is a potent compound that selectively generates reactive oxygen species (ROS) and induces cancer cell death. Autophagy, a cellular self-clearance pathway, can be induced by ROS and plays a dual role in cancer cell death. However, the role of autophagy in PHA-treated cancer cells is not understood. Our study initially showed that autophagy inhibitors such as bafilomycin A1 enhanced the cytotoxic effects of PHA in breast cancer cell lines, including MCF7 and MDA-MB-231. PHA treatment decreased the p62 protein level and increased LC3-II flux. PHA increased the fluorescence intensity of DAPGreen and DALGreen, which are used to reflect the formation of autophagosome/autolysosome and autolysosome, respectively. ROS scavenger N-acetylcysteine (NAC) decreased PHA-elevated autophagy activity, implying that PHA-induced ROS may be required for autophagy induction in breast cancer cells. Moreover, the autophagy inhibitor increased ROS levels and enhanced PHA-elevated ROS levels, while NAC scavenges the produced ROS resulting from PHA and autophagy inhibitor. In addition, the autophagy inhibitor elevated the PHA-induced proportion of annexin V/7-aminoactinmycin D and cleavage of caspase-3/8/9 and poly (ADP-ribose) polymerase. In contrast, NAC and apoptosis inhibitor Z-VAD-FMK blocked the proportion of annexin V/7-aminoactinmycin D and the activation of caspases. Taken together, PHA induced ROS to promote autophagy, which might play an antioxidant and anti-apoptotic role in breast cancer cells.
RESUMEN
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.