Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nature ; 567(7747): 213-217, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760921

RESUMEN

Correlated electron systems are highly susceptible to various forms of electronic order. By tuning the transition temperature towards absolute zero, striking deviations from conventional metallic (Fermi-liquid) behaviour can be realized. Evidence for electronic nematicity, a correlated electronic state with broken rotational symmetry, has been reported in a host of metallic systems1-5 that exhibit this so-called quantum critical behaviour. In all cases, however, the nematicity is found to be intertwined with other forms of order, such as antiferromagnetism5-7 or charge-density-wave order8, that might themselves be responsible for the observed behaviour. The iron chalcogenide FeSe1-xSx is unique in this respect because its nematic order appears to exist in isolation9-11, although until now, the impact of nematicity on the electronic ground state has been obscured by superconductivity. Here we use high magnetic fields to destroy the superconducting state in FeSe1-xSx and follow the evolution of the electrical resistivity across the nematic quantum critical point. Classic signatures of quantum criticality are revealed: an enhancement in the coefficient of the T2 resistivity (due to electron-electron scattering) on approaching the critical point and, at the critical point itself, a strictly T-linear resistivity that extends over a decade in temperature T. In addition to revealing the phenomenon of nematic quantum criticality, the observation of T-linear resistivity at a nematic critical point also raises the question of whether strong nematic fluctuations play a part in the transport properties of other 'strange metals', in which T-linear resistivity is observed over an extended regime in their respective phase diagrams.

2.
Nature ; 559(7713): 227-231, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995863

RESUMEN

The quantum Hall effect in two-dimensional electron gases involves the flow of topologically protected dissipationless charge currents along the edges of a sample. Integer or fractional electrical conductance is associated with edge currents of electrons or quasiparticles with fractional charges, respectively. It has been predicted that quantum Hall phenomena can also be created by edge currents with a fundamentally different origin: the fractionalization of quantum spins. However, such quantization has not yet been observed. Here we report the observation of this type of quantization of the Hall effect in an insulating two-dimensional quantum magnet1, α-RuCl3, with a dominant Kitaev interaction (a bond-dependent Ising-type interaction) on a two-dimensional honeycomb lattice2-7. We find that the application of a magnetic field parallel to the sample destroys long-range magnetic order, leading to a field-induced quantum-spin-liquid ground state with substantial entanglement of local spins8-12. In the low-temperature regime of this state, the two-dimensional thermal Hall conductance reaches a quantum plateau as a function of the applied magnetic field and has a quantization value that is exactly half of the two-dimensional thermal Hall conductance of the integer quantum Hall effect. This half-integer quantization of the thermal Hall conductance in a bulk material is a signature of topologically protected chiral edge currents of charge-neutral Majorana fermions (particles that are their own antiparticles), which have half the degrees of freedom of conventional fermions13-16. These results demonstrate the fractionalization of spins into itinerant Majorana fermions and Z2 fluxes, which is predicted to occur in Kitaev quantum spin liquids1,3. Above a critical magnetic field, the quantization disappears and the thermal Hall conductance goes to zero rapidly, indicating a topological quantum phase transition between the states with and without chiral Majorana edge modes. Emergent Majorana fermions in a quantum magnet are expected to have a great impact on strongly correlated quantum matter, opening up the possibility of topological quantum computing at relatively high temperatures.

3.
Phys Rev Lett ; 127(25): 257001, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35029441

RESUMEN

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, characterized by Cooper pairs condensed at finite momentum, has been a long-sought state that remains unresolved in many classes of fermionic systems, including superconductors and ultracold atoms. A fascinating aspect of the FFLO state is the emergence of periodic nodal planes in real space, but its observation is still lacking. Here we investigate the superconducting order parameter at high magnetic fields H applied perpendicular to the ab plane in a high-purity single crystal of FeSe. The heat capacity and magnetic torque provide thermodynamic evidence for a distinct superconducting phase at the low-temperature/high-field corner of the phase diagram. Despite the bulk superconductivity, spectroscopic-imaging scanning tunneling microscopy performed on the same crystal demonstrates that the order parameter vanishes at the surface upon entering the high-field phase. These results provide the first demonstration of a pinned planar node perpendicular to H, which is consistent with a putative FFLO state.

4.
Phys Rev Lett ; 124(10): 107001, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216412

RESUMEN

We present resistivity and thermal-conductivity measurements of superconducting FeSe in intense magnetic fields up to 35 T applied parallel to the ab plane. At low temperatures, the upper critical field µ_{0}H_{c2}^{ab} shows an anomalous upturn, while thermal conductivity exhibits a discontinuous jump at µ_{0}H^{*}≈24 T well below µ_{0}H_{c2}^{ab}, indicating a first-order phase transition in the superconducting state. This demonstrates the emergence of a distinct field-induced superconducting phase. Moreover, the broad resistive transition at high temperatures abruptly becomes sharp upon entering the high-field phase, indicating a dramatic change of the magnetic-flux properties. We attribute the high-field phase to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, where the formation of planar nodes gives rise to a segmentation of the flux-line lattice. We point out that strongly orbital-dependent pairing as well as spin-orbit interactions, the multiband nature, and the extremely small Fermi energy are important for the formation of the FFLO state in FeSe.

5.
Phys Rev Lett ; 122(7): 077001, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848633

RESUMEN

FeSe is argued as a superconductor in the Bardeen-Cooper-Schrieffer Bose-Einstein condensation crossover regime where the superconducting gap size and the superconducting transition temperature T_{c} are comparable to the Fermi energy. In this regime, vortex bound states should be well quantized and the preformed pairs above T_{c} may yield a pseudogap in the quasiparticle-excitation spectrum. We performed spectroscopic-imaging scanning tunneling microscopy to search for these features. We found Friedel-like oscillations near the vortex, which manifest the quantized levels, whereas the pseudogap was not detected. These apparently conflicting observations may be related to the multiband nature of FeSe.

6.
Phys Rev Lett ; 120(18): 187002, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775349

RESUMEN

Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. Here we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductor CeCoIn_{5} and antiferromagnetic (AFM) metal CeRhIn_{5}, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. This demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.

7.
Phys Rev Lett ; 120(21): 217205, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883185

RESUMEN

The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity κ_{xy} measurements in α-RuCl_{3}, a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction J_{K}/k_{B}∼80 K, positive κ_{xy} develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at T_{N}=7 K, the sign, magnitude, and T dependence of κ_{xy}/T at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.

8.
Nature ; 486(7403): 382-5, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22722198

RESUMEN

Electronic nematicity, a unidirectional self-organized state that breaks the rotational symmetry of the underlying lattice, has been observed in the iron pnictide and copper oxide high-temperature superconductors. Whether nematicity plays an equally important role in these two systems is highly controversial. In iron pnictides, the nematicity has usually been associated with the tetragonal-to-orthorhombic structural transition at temperature T(s). Although recent experiments have provided hints of nematicity, they were performed either in the low-temperature orthorhombic phase or in the tetragonal phase under uniaxial strain, both of which break the 90° rotational C(4) symmetry. Therefore, the question remains open whether the nematicity can exist above T(s) without an external driving force. Here we report magnetic torque measurements of the isovalent-doping system BaFe(2)(As(1-x)P(x))(2), showing that the nematicity develops well above T(s) and, moreover, persists to the non-magnetic superconducting regime, resulting in a phase diagram similar to the pseudogap phase diagram of the copper oxides. By combining these results with synchrotron X-ray measurements, we identify two distinct temperatures-one at T*, signifying a true nematic transition, and the other at T(s) (

9.
Phys Rev Lett ; 119(7): 077001, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949698

RESUMEN

A key aspect of unconventional pairing by the antiferromagnetic spin-fluctuation mechanism is that the superconducting energy gap must have the opposite sign on different parts of the Fermi surface. Recent observations of non-nodal gap structure in the heavy-fermion superconductor CeCu_{2}Si_{2} were then very surprising, given that this material has long been considered a prototypical example of a superconductor where the Cooper pairing is magnetically mediated. Here we present a study of the effect of controlled point defects, introduced by electron irradiation, on the temperature-dependent magnetic penetration depth λ(T) in CeCu_{2}Si_{2}. We find that the fully gapped state is robust against disorder, demonstrating that low-energy bound states, expected for sign-changing gap structures, are not induced by nonmagnetic impurities. This provides bulk evidence for s_{++}-wave superconductivity without sign reversal.

10.
Phys Rev Lett ; 118(14): 147004, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28430492

RESUMEN

The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T_{c}). However, the absence of hole pockets near the Fermi level of the iron-selenide (FeSe) derived high-T_{c} superconductors raises a fundamental question of whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-T_{c} phase induced by pressure in bulk FeSe from magnetotransport measurements and first-principles calculations. With increasing pressure, the low-T_{c} superconducting phase transforms into the high-T_{c} phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in contrast to other FeSe-derived high-T_{c} systems. Moreover, the Hall coefficient is enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-T_{c} phase. These results in FeSe highlight similarities with high-T_{c} phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.

11.
Phys Rev Lett ; 116(20): 206401, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27258878

RESUMEN

The effects of reduced dimensions and the interfaces on antiferromagnetic quantum criticality are studied in epitaxial Kondo superlattices, with alternating n layers of heavy-fermion antiferromagnet CeRhIn_{5} and seven layers of normal metal YbRhIn_{5}. As n is reduced, the Kondo coherence temperature is suppressed due to the reduction of effective Kondo screening. The Néel temperature is gradually suppressed as n decreases and the quasiparticle mass is strongly enhanced, implying dimensional control toward a quantum critical point. Magnetotransport measurements reveal that a quantum critical point is reached for the n=3 superlattice by applying small magnetic fields. Remarkably, the anisotropy of the quantum critical field is opposite to the expectations from the magnetic susceptibility in bulk CeRhIn_{5}, suggesting that the Rashba spin-orbit interaction arising from the inversion symmetry breaking at the interface plays a key role for tuning the quantum criticality in the two-dimensional Kondo lattice.

12.
Phys Rev Lett ; 114(4): 047001, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25679903

RESUMEN

We report a combination of Fe Kß x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx)2. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx)2. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx)2 (x=0.055) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

13.
Phys Rev Lett ; 115(2): 027006, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26207500

RESUMEN

Magnetoresistivity ρ(xx) and Hall resistivity ρ(xy) in ultrahigh magnetic fields up to 88 T are measured down to 0.15 K to clarify the multiband electronic structure in high-quality single crystals of superconducting FeSe. At low temperatures and high fields we observe quantum oscillations in both resistivity and the Hall effect, confirming the multiband Fermi surface with small volumes. We propose a novel approach to identify from magnetotransport measurements the sign of the charge carriers corresponding to a particular cyclotron orbit in a compensated metal. The observed significant differences in the relative amplitudes of the quantum oscillations between the ρ(xx) and ρ(xy) components, together with the positive sign of the high-field ρ(xy), reveal that the largest pocket should correspond to the hole band. The low-field magnetotransport data in the normal state suggest that, in addition to one hole and one almost compensated electron band, the orthorhombic phase of FeSe exhibits an additional tiny electron pocket with a high mobility.

14.
Phys Rev Lett ; 112(15): 156404, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24785062

RESUMEN

By using a molecular beam epitaxy technique, we fabricate a new type of superconducting superlattices with controlled atomic layer thicknesses of alternating blocks between the heavy-fermion superconductor CeCoIn5, which exhibits a strong Pauli pair-breaking effect, and nonmagnetic metal YbCoIn5. The introduction of the thickness modulation of YbCoIn5 block layers breaks the inversion symmetry centered at the superconducting block of CeCoIn5. This configuration leads to dramatic changes in the temperature and angular dependence of the upper critical field, which can be understood by considering the effect of the Rashba spin-orbit interaction arising from the inversion symmetry breaking and the associated weakening of the Pauli pair-breaking effect. Since the degree of thickness modulation is a design feature of this type of superlattices, the Rashba interaction and the nature of pair breaking are largely tunable in these modulated superlattices with strong spin-orbit coupling.

15.
Phys Rev Lett ; 110(25): 257002, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23829753

RESUMEN

We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

16.
Nat Commun ; 14(1): 667, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750576

RESUMEN

The recently discovered kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit unusual charge-density-wave (CDW) orders with time-reversal and rotational symmetry breaking. One of the most crucial unresolved issues is identifying the symmetry of the superconductivity that develops inside the CDW phase. Theory predicts a variety of unconventional superconducting symmetries with sign-changing and chiral order parameters. Experimentally, however, superconducting phase information in AV3Sb5 is still lacking. Here we report the impurity effects in CsV3Sb5 using electron irradiation as a phase-sensitive probe of superconductivity. Our magnetic penetration depth measurements reveal that with increasing impurities, an anisotropic fully-gapped state changes to an isotropic full-gap state without passing through a nodal state. Furthermore, transport measurements under pressure show that the double superconducting dome in the pressure-temperature phase diagram survives against sufficient impurities. These results support that CsV3Sb5 is a non-chiral, anisotropic s-wave superconductor with no sign change both at ambient and under pressure.

17.
Nat Commun ; 14(1): 4150, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438333

RESUMEN

The quantum vortex liquid (QVL) is an intriguing state of type-II superconductors in which intense quantum fluctuations of the superconducting (SC) order parameter destroy the Abrikosov lattice even at very low temperatures. Such a state has only rarely been observed, however, and remains poorly understood. One of the key questions is the precise origin of such intense quantum fluctuations and the role of nearby non-SC phases or quantum critical points in amplifying these effects. Here we report a high-field magnetotransport study of FeSe1-xSx and FeSe1-xTex which show a broad QVL regime both within and beyond their respective electron nematic phases. A clear correlation is found between the extent of the QVL and the strength of the superconductivity. This comparative study enables us to identify the essential elements that promote the QVL regime in unconventional superconductors and to demonstrate that the QVL regime itself is most extended wherever superconductivity is weakest.

18.
Phys Rev Lett ; 108(4): 047003, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22400882

RESUMEN

High-precision measurements of magnetic penetration depth λ in clean single crystals of LiFeAs and LiFeP superconductors reveal contrasting behaviors. In LiFeAs the low-temperature λ(T) shows a flat dependence indicative of a fully gapped state, which is consistent with previous studies. In contrast, LiFeP exhibits a T-linear dependence of superfluid density infinity λ(-2), indicating a nodal superconducting order parameter. A systematic comparison of quasiparticle excitations in the 1111, 122, and 111 families of iron-pnictide superconductors implies that the nodal state is induced when the pnictogen height from the iron plane decreases below a threshold value of ~1.33 Å.

19.
Phys Rev Lett ; 109(3): 036401, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861875

RESUMEN

We report the first observation of cyclotron resonance in the hidden-order phase of ultraclean URu2Si2 crystals, which allows the full determination of angle-dependent electron-mass structure of the main Fermi-surface sheets. We find an anomalous splitting of the sharpest resonance line under in-plane magnetic-field rotation. This is most naturally explained by the domain formation, which breaks the fourfold rotational symmetry of the underlying tetragonal lattice. The results reveal the emergence of an in-plane mass anisotropy with hot spots along the [110] direction, which can account for the anisotropic in-plane magnetic susceptibility reported recently. This is consistent with the "nematic" Fermi liquid state, in which itinerant electrons have unidirectional correlations.

20.
Phys Rev Lett ; 108(4): 047002, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22400881

RESUMEN

We report a de Haas-van Alphen oscillation study of the 111 iron pnictide superconductors LiFeAs with T(c) ≈ 18 K and LiFeP with T(c) ≈ 5 K. We find that for both compounds the Fermi surface topology is in good agreement with density functional band-structure calculations and has almost nested electron and hole bands. The effective masses generally show significant enhancement, up to ~3 for LiFeP and ~5 for LiFeAs. However, one hole Fermi surface in LiFeP shows a very small enhancement, as compared with its other sheets. This difference probably results from k-dependent coupling to spin fluctuations and may be the origin of the different nodal and nodeless superconducting gap structures in LiFeP and LiFeAs, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA