RESUMEN
Freezing of gait (FoG) is one of the main reasons for movement initiation disorders and abnormal coupling of posture and gait in Parkinson's disease (PD). Patients with FoG have poor postural control when compared to patients without FoG. However, the nature of the interrelationship between FoG and domains of postural control remains unknown. The aim of this study was to estimate the association between different domains of postural control and severity of FoG in patients with moderate-to-severe PD. Thirty patients with idiopathic PD with FoG (age range 45-80 years, Hoehn & Yahr stages 3 and 4) participated in the study. We evaluated objective (FoG-ratio during turning task) and subjective (New Freezing of Gait Questionnaire, NFoG-Q) measures of FoG severity, reactive postural adjustments in response to an external perturbation, first step anticipatory adjustment for step initiation and quiet standing stability. In the multiple regression analysis, step initiation was the strongest significant correlation of the NFoG-Q score explaining 23% of the variance of the assessment. For the objective FoG measure, mediolateral CoP amplitude in quiet standing and mediolateral CoP amplitude in step initiation explained 39% of the variance of the FoG-ratio. As main conclusions, this study identified the association between objective and subjective measure for FoG severity and postural control domains. The results support conducting step initiation training during rehabilitation of individuals with FoG.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Anciano , Anciano de 80 o más Años , Marcha , Trastornos Neurológicos de la Marcha/etiología , Humanos , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Equilibrio Postural , PosturaRESUMEN
Background: To our knowledge, there is no Parkinson's disease (PD) gait biomechanics data sets available to the public. Objective: This study aimed to create a public data set of 26 idiopathic individuals with PD who walked overground on ON and OFF medication. Materials and methods: Their upper extremity, trunk, lower extremity, and pelvis kinematics were measured using a three-dimensional motion-capture system (Raptor-4; Motion Analysis). The external forces were collected using force plates. The results include raw and processed kinematic and kinetic data in c3d and ASCII files in different file formats. In addition, a metadata file containing demographic, anthropometric, and clinical data is provided. The following clinical scales were employed: Unified Parkinson's disease rating scale motor aspects of experiences of daily living and motor score, Hoehn & Yahr, New Freezing of Gait Questionnaire, Montreal Cognitive Assessment, Mini Balance Evaluation Systems Tests, Fall Efficacy Scale-International-FES-I, Stroop test, and Trail Making Test A and B. Results: All data are available at Figshare (https://figshare.com/articles/dataset/A_dataset_of_overground_walking_full-body_kinematics_and_kinetics_in_individuals_with_Parkinson_s_disease/14896881). Conclusion: This is the first public data set containing a three-dimensional full-body gait analysis of individuals with PD under the ON and OFF medication. It is expected to contribute so that different research groups worldwide have access to reference data and a better understanding of the effects of medication on gait.
RESUMEN
INTRODUCTION: This study aims to evaluate the effects of medication, and the freezing of gait (FoG) on the kinematic and kinetic parameters of gait in people with Parkinson's disease (pwPD) compared to neurologically healthy. METHODS: Twenty-two people with a clinical diagnosis of idiopathic PD in ON and OFF medication (11 FoG), and 18 healthy participants (control) were selected from two open data sets. All participants walked on the floor on a 10-meter-long walkway. The joint kinematic and ground reaction forces (GRF) variables of gait and the clinical characteristics were compared: (1) PD with FoG (pwFoG) and PD without FoG (pwoFoG) in the ON condition and control; (2) PD with FoG and PD without FoG in the OFF condition and control; (3) Group (PD with FoG and PD without FoG) and Medication. RESULTS: (1) FoG mainly affects distal joints, such as the ankle and knee; (2) PD ON showed changes in the range of motion of both distal and proximal joints, which may explain the increase in step length and gait speed expected with the use of L-Dopa; and (3) the medication showed improvements in the kinematic and kinetic parameters of the gait of people with pwFoG and pwoFoG equally; (4) pwPD showed a smaller second peak of the vertical component of the GRF than the control. CONCLUSION: The presence of FoG mainly affects distal joints, such as the ankle and knee. PD presents a lower application of GRF during the impulse period than healthy people, causing lower gait performances.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/diagnóstico , Fenómenos Biomecánicos , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Marcha , Dopaminérgicos/uso terapéutico , Extremidad InferiorRESUMEN
BACKGROUND: Continuous oscillation of the support base requires anticipatory and reactive postural adjustments to maintain a stable balance. In this context, postural control flexibility or the ability to adjust balance mechanisms following the requirements of the environment is needed to counterbalance the predictable, continuous perturbation of body balance. Considering the inflexibility of postural responses in individuals with Parkinson's disease (PD), maintaining stability in the support base's continuous oscillations may be challenging. Varying the frequency of platform oscillation is an exciting approach to assess the interactions between reactive and anticipatory adjustments. RESEARCH QUESTION: This study aimed to analyze postural responses of individuals with PD on an oscillatory support base across different frequencies. METHODS: Thirty participants with moderate PD diagnosis (M = 64.47 years, SD = 8.59; Hoehn and Yahr scale 3) and fifteen healthy age-matched controls (M = 65.8 years, SD = 4.2) were tested. Subjects maintained a dynamic balance on a platform oscillating in sinusoidal translations. Four oscillation frequencies were evaluated in different trials that ranged from 0.2 to 0.8 Hz in steps of 0.2 Hz. RESULTS: Analysis showed similar performance between PD and healthy participants, with modulation of amplitudes of head displacement, center of pressure, center of mass and feet-head coordination to platform oscillation frequency. DISCUSSION: Our findings suggest a preserved ability of individuals with PD to dynamically control body balance on a support base with predictable oscillatory translations.