Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 522(1): 127-132, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31753489

RESUMEN

The plant seed proteins referred to as vicilins belong to a structurally common superfamily. While some of them are reported to exhibit superoxide dismutase activity, vicilins from other sources do not possess this activity. Vicilin from Corylus avellana (HZ.1) and Solanum lycopersicum (SL80.1) were purified and subjected to structure-function analysis. The superoxide dismutase activity assays were performed to understand the functional differences between them. While SL80.1 has the superoxide dismutase activity, HZ.1 was enzymatically inactive. Crystal structure followed by mass spectrometry analysis of both the proteins revealed that while SL80.1 has bound salicylic acid, HZ.1 does not. Comparison of C-terminal binding pocket of both the structures revealed that a point mutation at residue 321 in HZ.1 (Gly→Cys) leads to obstruction in binding of salicylic acid in the pocket. Similarly, copper-binding loop of HZ.1 was reportedly found to be intact and shorter than the loops reported in SL80.1. The copper-binding loop of SL80.1 is rich in polar residues and the absence of these residues in HZ.1 copper-binding loop possibly indicates deficiency in channeling of oxygen radicals to the active center of the enzyme. Difference in the enzymatic activity of vicilin from two evolutionarily distinct sources is due to mutations in its co-factor binding pocket and copper-binding loop.


Asunto(s)
Cobre/química , Corylus/metabolismo , Globulinas/química , Ácido Salicílico/química , Solanum lycopersicum/metabolismo , Superóxido Dismutasa/metabolismo , Sitios de Unión , Dominio Catalítico , Mutación , Unión Proteica , Especies Reactivas de Oxígeno , Proteínas de Almacenamiento de Semillas/química , Superóxidos/metabolismo
2.
Biochem J ; 475(19): 3057-3071, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30181145

RESUMEN

Proteins belonging to cupin superfamily are known to have critical and diverse physiological functions. However, 7S globulins family, which is also a part of cupin superfamily, were undermined as only seed storage proteins. Structure determination of native protein - Vic_CAPAN from Capsicum annuum - was carried out, and its physiological functions were explored after purifying the protein by ammonium sulfate precipitation followed by size exclusion chromatography. The crystal structure of vicilin determined at 2.16 Šresolution revealed two monomers per asymmetric unit which are juxtaposed orthogonal with each other. Vic_CAPAN consists predominately of ß-sheets that folds to form a ß-barrel structure commonly called cupin fold. Each monomer of Vic_CAPAN consists of two cupin fold domains, N-terminal and C-terminal, which accommodate two different ligands. A bound ligand was identified at the C-terminal cupin fold in the site presumably conserved for metabolites in the crystal structure. The ligand was confirmed to be salicylic acid through mass spectrometric analysis. A copper-binding site was further observed near the conserved ligand-binding pocket, suggesting possible superoxide dismutase activity of Vic_CAPAN which was subsequently confirmed biochemically. Vicilins from other sources did not exhibit this activity indicating functional specificity of Vic_CAPAN. Discovery of bound salicylic acid, which is a known regulator of antioxidant pathway, and revelation of superoxide dismutase activity suggest that Vic_CAPAN has an important role during oxidative stress. As salicylic acid changes the redox state of cell, it may act as a downstream signal for various pathways involved in plant biotic and abiotic stress rescue.


Asunto(s)
Capsicum , Estrés Oxidativo/fisiología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Cristalización , Extractos Vegetales/genética , Estructura Secundaria de Proteína , Proteínas de Almacenamiento de Semillas/genética , Semillas
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 2): 47-57, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32039885

RESUMEN

The structure of the MP-4 protein was previously determined at a resolution of 2.8 Å. Owing to the unavailability of gene-sequence information at the time, the side-chain assignment was carried out on the basis of a partial sequence available through Edman degradation, sequence homology to orthologs and electron density. The structure of MP-4 has now been determined at a higher resolution (2.22 Å) in another space group and all of the structural inferences that were presented in the previous report of the structure were validated. In addition, the present data allowed an improved assignment of side chains and enabled further analysis of the MP-4 structure, and the accuracy of the assignment was confirmed by the recently available gene sequence. The study reinforces the traditional concept that conservative interpretations of relatively low-resolution structures remain correct even with the availability of high-resolution data.


Asunto(s)
Mucuna/metabolismo , Extractos Vegetales/metabolismo , Proteínas de Plantas/química , Conformación Proteica , Semillas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA