Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2212849120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36630452

RESUMEN

Protein folding is crucial for biological activity. Proteins' failure to fold correctly underlies various pathological processes, including amyloidosis, the aggregation of insoluble proteins (e.g., lysozymes) in organs. The exact conditions that trigger the structural transition of amyloids into ß-sheet-rich aggregates are poorly understood, as is the case for the amyloidogenic self-assembly pathway. Ultrasound is routinely used to destabilize a protein's structure and enhance amyloid growth. Here, we report on an unexpected ultrasound effect on lysozyme amyloid species at different stages of aggregation: ultrasound-induced structural perturbation gives rise to nonamyloidogenic folds. Our infrared and X-ray analyses of the chemical, mechanical, and thermal effects of sound on lysozyme's structure found, in addition to the expected ultrasound-induced damage, evidence of irreversible disruption of the ß-sheet fold of fibrillar lysozyme resulting in their structural transformation into monomers with no ß-sheets. This structural transition is reflected in changes in the kinetics of protein self-assembly, namely, either prolonged nucleation or accelerated fibril growth. Using solution X-ray scattering, we determined the structure, the mass fraction of lysozyme monomer, and the morphology of its filamentous assemblies formed under different sound parameters. A nanomechanical analysis of ultrasound-modified protein assemblies revealed a correlation between the ß-sheet content and elastic modulus of the protein material. Suppressing one of the ultrasound-derived effects allowed us to control the structural transformations of lysozyme. Overall, our comprehensive investigation establishes the boundary conditions under which ultrasound damages protein structure and fold. This knowledge can be utilized to impose medically desirable structural modifications on amyloid ß-sheet-rich proteins.


Asunto(s)
Amiloidosis , Muramidasa , Humanos , Muramidasa/química , Péptidos beta-Amiloides/química , Amiloide/química , Pliegue de Proteína
2.
Small ; 20(22): e2308069, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38148317

RESUMEN

A notable feature of complex cellular environments is protein-rich compartments that are formed via liquid-liquid phase separation. Recent studies have shown that these biomolecular condensates can play both promoting and inhibitory roles in fibrillar protein self-assembly, a process that is linked to Alzheimer's, Parkinson's, Huntington's, and various prion diseases. Yet, the exact regulatory role of these condensates in protein aggregation remains unknown. By employing microfluidics to create artificial protein compartments, the self-assembly behavior of the fibrillar protein lysozyme within them can be characterized. It is observed that the volumetric parameters of protein-rich compartments can change the kinetics of protein self-assembly. Depending on the change in compartment parameters, the lysozyme fibrillation process either accelerated or decelerated. Furthermore, the results confirm that the volumetric parameters govern not only the nucleation and growth phases of the fibrillar aggregates but also affect the crosstalk between the protein-rich and protein-poor phases. The appearance of phase-separated compartments in the vicinity of natively folded protein complexes triggers their abrupt percolation into the compartments' core and further accelerates protein aggregation. Overall, the results of the study shed more light on the complex behavior and functions of protein-rich phases and, importantly, on their interaction with the surrounding environment.


Asunto(s)
Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Agregado de Proteínas , Cinética , Proteínas/química , Proteínas/metabolismo , Amiloide/química , Amiloide/metabolismo
3.
Angew Chem Int Ed Engl ; 63(14): e202318365, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38206201

RESUMEN

Protein self-assembly is a fundamental biological process where proteins spontaneously organize into complex and functional structures without external direction. This process is crucial for the formation of various biological functionalities. However, when protein self-assembly fails, it can trigger the development of multiple disorders, thus making understanding this phenomenon extremely important. Up until recently, protein self-assembly has been solely linked either to biological function or malfunction; however, in the past decade or two it has also been found to hold promising potential as an alternative route for fabricating materials for biomedical applications. It is therefore necessary and timely to summarize the key aspects of protein self-assembly: how the protein structure and self-assembly conditions (chemical environments, kinetics, and the physicochemical characteristics of protein complexes) can be utilized to design biomaterials. This minireview focuses on the basic concepts of forming supramolecular structures, and the existing routes for modifications. We then compare the applicability of different approaches, including compartmentalization and self-assembly monitoring. Finally, based on the cutting-edge progress made during the last years, we summarize the current knowledge about tailoring a final function by introducing changes in self-assembly and link it to biomaterials' performance.


Asunto(s)
Materiales Biocompatibles , Proteínas
4.
Langmuir ; 39(26): 8984-8995, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37343062

RESUMEN

The rheological characteristics of pre-spun native silk protein, which is stored as a viscous pulp inside the silk gland, are the key factors that determine the mechanical performance of the endpoint material: the spun silk fibers. In silkworms and arthropods, microcompartmentalization was shown to play an important regulatory role in storing and stabilizing the aggregation-prone silk and in initiating the fibrillar self-assembly process. However, our current understanding of the mechanism of stabilization of the highly unstable protein pulp in its soluble state inside the microcompartments and of the conditions required for initiating the structural transition in protein inside the microcompartments remains limited. Here, we exploited the power of droplet microfluidics to mimic the silk protein's microcompartmentalization event; we introduced changes in the chemical environment and analyzed the storage-to-spinning transition as well as the accompanying structural changes in silk fibroin protein, from its native fold into an aggregative ß-sheet-rich structure. Through a combination of experimental and computational simulations, we established the conditions under which the structural transition in microcompartmentalized silk protein is initiated, which, in turn, is reflected in changes in the silk-rich fluid behavior. Overall, our study sheds light on the role of the independent parameters of a dynamically changing chemical environment, changes in fluid viscosity, and the shear forces that act to balance silk protein self-assembly, and thus, facilitate new exploratory avenues in the field of biomaterials.


Asunto(s)
Bombyx , Fibroínas , Animales , Seda/química , Bombyx/química , Fibroínas/química , Reología , Microfluídica
5.
Small ; 17(26): e2007188, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050722

RESUMEN

Peptides and proteins have evolved to self-assemble into supramolecular entities through a set of non-covalent interactions. Such structures and materials provide the functional basis of life. Crucially, biomolecular assembly processes can be highly sensitive to and modulated by environmental conditions, including temperature, light, ionic strength and pH, providing the inspiration for the development of new classes of responsive functional materials based on peptide building blocks. Here, it is shown that the stimuli-responsive assembly of amyloidogenic peptide can be used as the basis of environmentally responsive microcapsules which exhibit release characteristics triggered by a change in pH. The microcapsules are biocompatible and biodegradable and may act as vehicles for controlled release of a wide range of biomolecules. Cryo-SEM images reveal the formation of a fibrillar network of the capsule interior with discrete compartments in which cargo molecules can be stored. In addition, the reversible formation of these microcapsules by modulating the solution pH is investigated and their potential application for the controlled release of encapsulated cargo molecules, including antibodies, is shown. These results suggest that the approach described here represents a promising venue for generating pH-responsive functional peptide-based materials for a wide range of potential applications for molecular encapsulation, storage, and release.


Asunto(s)
Péptidos , Cápsulas , Concentración de Iones de Hidrógeno , Temperatura
6.
Molecules ; 26(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834017

RESUMEN

Cyclic 6-membered aromatic compounds such as benzene and azabenzenes (pyridine, pyridazine, and pyrazine) are known to be light-sensitive, affording, in particular, the Dewar benzene type of intermediates. Pyridine is known to provide the only Dewar pyridine intermediate that undergoes reversible ring-opening. We found that irradiation of photosensitive gels prepared from poly(4-vinyl pyridine) and pyridine at 254 or 312 nm leads to pyridine ring-opening and subsequent formation of 5-amino-2,4-pentadienals. We show that this light-induced process is only partially reversible, and that the photogenerated aminoaldehyde and aminoaldehyde-pending groups undergo self-condensation to produce cross-linked, conjugated oligomers that absorb light in the visible spectrum up to the near-infrared range. Such a sequence of chemical reactions results in the formation of gel with two distinct morphologies: spheres and fiber-like matrices. To gain deeper insight into this process, we prepared poly(4-vinyl pyridine) with low molecular weight (about 2000 g/mol) and monitored the respective changes in absorption, fluorescence, 1H-NMR spectra, and electrical conductivity. The conductivity of the polymer gel upon irradiation changes from ionic to electronic, indicative of a conjugated molecular wire behavior. Quantum mechanical calculations confirmed the feasibility of the proposed polycondensation process. This new polyacetylene analog has potential in thermal energy-harvesting and sensor applications.

7.
Macromol Rapid Commun ; 40(8): e1800898, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30840348

RESUMEN

Silk fibroin is a natural protein obtained from the Bombyx mori silkworm. In addition to being the key structural component in silkworm cocoons, it also has the propensity to self-assemble in vitro into hierarchical structures with desirable properties such as high levels of mechanical strength and robustness. Furthermore, it is an appealing biopolymer due to its biocompatability, low immunogenicity, and lack of toxicity, making it a prime candidate for biomedical material applications. Here, it is demonstrated that nanofibrils formed by reconstituted silk fibroin can be engineered into supramolecular microgels using a soft lithography-based microfluidic approach. Building on these results, a potential application for these protein microgels to encapsulate and release small molecules in a controlled manner is illustrated. Taken together, these results suggest that the tailored self-assembly of biocompatible and biodegradable silk nanofibrils can be used to generate functional micromaterials for a range of potential applications in the biomedical and pharmaceutical fields.


Asunto(s)
Fibroínas/química , Seda/química , Animales , Materiales Biocompatibles/química , Bombyx , Geles/química , Sustancias Macromoleculares/química
8.
Adv Exp Med Biol ; 1174: 223-263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31713201

RESUMEN

Nanofibrillar forms of amyloidogenic proteins were initially discovered in the context of protein misfolding and disease but have more recently been found at the origin of key biological functionality in many naturally occurring functional materials, such as adhesives and biofilm coatings. Their physiological roles in nature reflect their great strength and stability, which has led to the exploration of their use as the basis of artificial protein-based functional materials. Particularly for biomedical applications, they represent attractive building blocks for the development of, for instance, drug carrier agents due to their inherent biocompatibility and biodegradability. Furthermore, the propensity of proteins to self-assemble into amyloid fibrils can be exploited under microconfinement, afforded by droplet microfluidic techniques. This approach allows the generation of multi-scale functional microgels that can host biological additives and can be designed to incorporate additional functionality, such as to aid targeted drug delivery.


Asunto(s)
Proteínas Amiloidogénicas , Geles , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Tecnología Biomédica/tendencias , Geles/química , Microfluídica
9.
Proc Natl Acad Sci U S A ; 112(31): 9524-9, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195762

RESUMEN

The generation of mechanical forces are central to a wide range of vital biological processes, including the function of the cytoskeleton. Although the forces emerging from the polymerization of native proteins have been studied in detail, the potential for force generation by aberrant protein polymerization has not yet been explored. Here, we show that the growth of amyloid fibrils, archetypical aberrant protein polymers, is capable of unleashing mechanical forces on the piconewton scale for individual filaments. We apply microfluidic techniques to measure the forces released by amyloid growth for two systems: insulin and lysozyme. The level of force measured for amyloid growth in both systems is comparable to that observed for actin and tubulin, systems that have evolved to generate force during their native functions and, unlike amyloid growth, rely on the input of external energy in the form of nucleotide hydrolysis for maximum force generation. Furthermore, we find that the power density released from growing amyloid fibrils is comparable to that of high-performance synthetic polymer actuators. These findings highlight the potential of amyloid structures as active materials and shed light on the criteria for regulation and reversibility that guide molecular evolution of functional polymers.


Asunto(s)
Amiloide/química , Agregado de Proteínas , Animales , Fenómenos Biomecánicos , Bovinos , Microfluídica , Muramidasa/química
10.
Biomacromolecules ; 18(10): 3052-3059, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28792742

RESUMEN

In nature, a wide range of functional materials is based on proteins. Increasing attention is also turning to the use of proteins as artificial biomaterials in the form of films, gels, particles, and fibrils that offer great potential for applications in areas ranging from molecular medicine to materials science. To date, however, most such applications have been limited to single component materials despite the fact that their natural analogues are composed of multiple types of proteins with a variety of functionalities that are coassembled in a highly organized manner on the micrometer scale, a process that is currently challenging to achieve in the laboratory. Here, we demonstrate the fabrication of multicomponent protein microcapsules where the different components are positioned in a controlled manner. We use molecular self-assembly to generate multicomponent structures on the nanometer scale and droplet microfluidics to bring together the different components on the micrometer scale. Using this approach, we synthesize a wide range of multiprotein microcapsules containing three well-characterized proteins: glucagon, insulin, and lysozyme. The localization of each protein component in multishell microcapsules has been detected by labeling protein molecules with different fluorophores, and the final three-dimensional microcapsule structure has been resolved by using confocal microscopy together with image analysis techniques. In addition, we show that these structures can be used to tailor the release of such functional proteins in a sequential manner. Moreover, our observations demonstrate that the protein release mechanism from multishell capsules is driven by the kinetic control of mass transport of the cargo and by the dissolution of the shells. The ability to generate artificial materials that incorporate a variety of different proteins with distinct functionalities increases the breadth of the potential applications of artificial protein-based materials and provides opportunities to design more refined functional protein delivery systems.


Asunto(s)
Cápsulas/química , Liberación de Fármacos , Glucagón/química , Insulina/química , Muramidasa/química
11.
Biomacromolecules ; 16(9): 2904-10, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26241560

RESUMEN

Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol.


Asunto(s)
Colesterol , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico , Membrana Dobles de Lípidos , Péptidos , Fosfolípidos , Células CACO-2 , Colesterol/química , Colesterol/farmacología , Ácido Fólico/química , Ácido Fólico/farmacología , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/farmacología , Liposomas , Péptidos/química , Péptidos/farmacología , Fosfolípidos/química , Fosfolípidos/farmacología
12.
Nanomedicine ; 11(5): 1077-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25791804

RESUMEN

Folic Acid (FA)-tagged protein nanoemulsions were found to be preferentially internalized on B-cell lymphoma cell line (A20 cell line), which, for the first time, is reported to express folate receptor (FR)-alpha. Carbon monoxide releasing molecule-2 (CORM-2) was incorporated in the oil phase of the initial formulation. FA-functionalized nanoemulsions loaded with CORM-2 exhibited a considerable antitumor effect and an increased survival of BALB/c mice bearing subcutaneous A20 lymphoma tumors. The developed nanoemulsions also demonstrated to be well tolerated by these immunocompetent mice. Thus, the results obtained in this study demonstrate that FA-tagged protein nanoemulsions can be successfully used in cancer therapy, with the important ability to delivery drugs intracellularly. FROM THE CLINICAL EDITOR: In this research, the authors developed folic acid tagged nanoemulsions containing a carbon monoxide releasing protein molecule for targeted cancer cell treatment. In-vitro and in-vivo experiments showed efficacy against B-cell lymphoma cells. The same nanocarrier platform could be applied to other tumor cells expressing folate receptors on the cell surface.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ácido Fólico/química , Linfoma/tratamiento farmacológico , Compuestos Organometálicos/administración & dosificación , Albúmina Sérica Bovina/química , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Portadores de Fármacos/metabolismo , Femenino , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/metabolismo , Humanos , Linfoma/metabolismo , Linfoma/patología , Ratones Endogámicos BALB C , Compuestos Organometálicos/uso terapéutico , Albúmina Sérica Bovina/metabolismo
13.
Chem Soc Rev ; 43(5): 1361-71, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24336689

RESUMEN

Micro- and nano-scale systems have emerged as important tools for developing clinically useful drug delivery systems. In this tutorial review, we discuss the exploitation of biomacromolecules for this purpose, focusing on proteins, polypeptides, nucleic acids and polysaccharides and mixtures thereof as potential building blocks for novel drug delivery systems. We focus on the mechanisms of formation of micro- and nano-scale protein-based capsules and shells, as well as on the functionalization of such structures for use in targeted delivery of bioactive materials. We summarise existing methods for protein-based capsule synthesis and functionalization and highlight future challenges and opportunities for delivery strategies based on biomacromolecules.


Asunto(s)
Portadores de Fármacos/química , Nanocápsulas/química , Proteínas/química , Tamaño de la Partícula , Estabilidad Proteica , Proteínas/metabolismo
14.
Mol Pharm ; 11(5): 1479-88, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24649886

RESUMEN

A novel transdermal hyaluronic acid (HA) conjugated with bovine serum albumin (BSA) was developed in the form of solid-in-oil (S/O) nanodispersion (129.7 nm mean diameter). Ex vivo skin penetration analysis by fluorescence and confocal observation of histological skin sections revealed the ability of BSA/HA nanodispersions to cross the stratum corneum and penetrate into the dermis. Furthermore, no significant toxicity was found in fibroblast and keratinocyte cells in vitro. These results proved the potential of the developed nanodispersion for transdermal delivery of hyaluronic acid constituting a high value to biopharmaceutical and cosmetics industries.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Ácido Hialurónico/química , Nanoestructuras/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Línea Celular , Sistemas de Liberación de Medicamentos/efectos adversos , Fibroblastos/metabolismo , Humanos , Nanoestructuras/efectos adversos , Piel/metabolismo
15.
ChemSusChem ; : e202401148, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023515

RESUMEN

Silk fibers constitute a class of protein building blocks capable of functionalization and reprocessing into various material formats. The properties of these fibers are typically affected by the intense thermal treatments needed to remove the sericin gum coating layer. Additionally, their mechanical characteristics are often misinterpreted by assuming the cross-sectional area is a perfect circle. The thermal treatments impact not only the mechanics of the fibers but also the structure of the resolubilized protein, thereby limiting the performance of the resulting silk-based materials. To mitigate these limitations, we explored varying alkali conditions at low temperatures for surface treatment, effectively removing the sericin gum layer while preserving the molecular structure of the fibroin protein, thus, maintaining the hierarchical integrity of the exposed fibroin microfiber core. The precise determination of the initial CSA of the asymmetrical silk fibers led to a comprehensive analysis of their mechanical properties. Our findings indicate that the alkali surface treatment raised the Young's modulus and tensile strength by increasing the fibers' crystallinity by approximately 40% and 50%, respectively, without compromising their strain. We have shown that this treatment facilitated further production of high-purity soluble silk with rheological and self-assembly characteristics comparable to those of native silk.

16.
ACS Appl Mater Interfaces ; 16(7): 9210-9223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38330192

RESUMEN

Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded ß-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.


Asunto(s)
Fibroínas , Nanoestructuras , Seda/química , Fibroínas/química , Polisacáridos , Pectinas , Materiales Biocompatibles/química
17.
FEBS Lett ; 597(24): 3013-3037, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838939

RESUMEN

Mechanical energy in the form of ultrasound and protein complexes intuitively have been considered as two distinct unrelated topics. However, in the past few years, increasingly more attention has been paid to the ability of ultrasound to induce chemical modifications on protein molecules that further change protein-protein interaction and protein self-assembling behavior. Despite efforts to decipher the exact structure and the behavior-modifying effects of ultrasound on proteins, our current understanding of these aspects remains limited. The limitation arises from the complexity of both phenomena. Ultrasound produces multiple chemical, mechanical, and thermal effects in aqueous media. Proteins are dynamic molecules with diverse complexation mechanisms. This review provides an exhaustive analysis of the progress made in better understanding the role of ultrasound in protein complexation. It describes in detail how ultrasound affects an aqueous environment and the impact of each effect separately and when combined with the protein structure and fold, the protein-protein interaction, and finally the protein self-assembly. It specifically focuses on modifying role of ultrasound in amyloid self-assembly, where the latter is associated with multiple neurodegenerative disorders.


Asunto(s)
Amiloide , Agua , Amiloide/química , Agua/química
18.
ACS Mater Au ; 3(6): 699-710, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38089663

RESUMEN

Noble metal nanoparticles (NPs) and particularly gold (Au) have become emerging materials in recent decades due to their exceptional optical properties, such as localized surface plasmons. Although multiple and relatively simple protocols have been developed for AuNP synthesis, the functionalization of solid surfaces composed of soft matter with AuNPs often requires complex and multistep processes. Here we developed a facile approach for functionalizing soft adhesive flexible films with plasmonic AuNPs. The synthetic route is based on preparing Au nanoislands (AuNI) (ca. 2-300 nm) on a glass substrate followed by hydrophobization of the functionalized surface, which in turn, allows efficient transfer of AuNIs to flexible adhesive films via soft-printing tape lithography. Here we show that the AuNI structure remained intact after the hydrophobization and soft-printing procedures. The AuNI-functionalized flexible films were characterized by various techniques, revealing unique characteristics such as tunable localized plasmon resonance and Raman enhancement factors beneficial for chemical and biological sensing applications.

19.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745331

RESUMEN

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, influencing their stability, folding patterns, and self-assembling behavior. Regarding understanding the effects of ultrasound on the self-assembly of amyloidogenic proteins, our knowledge remains quite limited. In our recent work, we established the boundary conditions under which sound energy can either cause damage or induce only negligible changes in the structure of protein species. In the present study, we demonstrate that when the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, as it has been revealed by MD, which is sufficient for primary nucleation, characterized by adopting a hydrogen-bonded ß -sheet-rich structure. These structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from monomeric lysozyme proteins, in a controlled manner, until they reach a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed under the influence of ultrasound energy and natively fibrillated lysozyme, share identical structural characteristics. Thus, these results contribute to our understanding of the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential exploitation of sound energy in a protein chemistry environment.

20.
Chemistry ; 18(1): 365-9, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22127843

RESUMEN

A novel antibacterial coating for cotton and polyester fabrics has been developed by using drug-loaded proteinaceous microspheres made of bovine serum albumin and casein proteins. The microbubbles were created and anchored onto the fabrics (see figure) in a one-step reaction that lasts 3 min. The sonochemically produced "antibacterial fabrics" have been characterized. The efficiency of the sonochemical process in converting the native proteins into microspheres, encapsulating the drug, and coating the fabric has also been studied.


Asunto(s)
Antibacterianos/química , Caseínas/química , Fibra de Algodón , Poliésteres/química , Albúmina Sérica Bovina/química , Antibacterianos/síntesis química , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA