Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 627(8005): 865-872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509377

RESUMEN

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Asunto(s)
Astrocitos , Encefalomielitis Autoinmune Experimental , Memoria Epigenética , Esclerosis Múltiple , Animales , Femenino , Humanos , Masculino , Ratones , Acetilcoenzima A/metabolismo , Astrocitos/enzimología , Astrocitos/metabolismo , Astrocitos/patología , ATP Citrato (pro-S)-Liasa/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Sistemas CRISPR-Cas , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Inflamación/enzimología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Análisis de Expresión Génica de una Sola Célula , Transposasas/metabolismo
3.
Nat Protoc ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039320

RESUMEN

Rare cells have an important role in development and disease, and methods for isolating and studying cell subsets are therefore an essential part of biology research. Such methods traditionally rely on labeled antibodies targeted to cell surface proteins, but large public databases and sophisticated computational approaches increasingly define cell subsets on the basis of genomic, epigenomic and transcriptomic sequencing data. Methods for isolating cells on the basis of nucleic acid sequences powerfully complement these approaches by providing experimental access to cell subsets discovered in cell atlases, as well as those that cannot be otherwise isolated, including cells infected with pathogens, with specific DNA mutations or with unique transcriptional or splicing signatures. We recently developed a nucleic acid cytometry platform called 'focused interrogation of cells by nucleic acid detection and sequencing' (FIND-seq), capable of isolating rare cells on the basis of RNA or DNA markers, followed by bulk or single-cell transcriptomic analysis. This platform has previously been used to characterize the splicing-dependent activation of the transcription factor XBP1 in astrocytes and HIV persistence in memory CD4 T cells from people on long-term antiretroviral therapy. Here, we outline the molecular and microfluidic steps involved in performing FIND-seq, including protocol updates that allow detection and whole transcriptome sequencing of rare HIV-infected cells that harbor genetically intact virus genomes. FIND-seq requires knowledge of microfluidics, optics and molecular biology. We expect that FIND-seq, and this comprehensive protocol, will enable mechanistic studies of rare HIV+ cells, as well as other cell subsets that were previously difficult to recover and sequence.

4.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260616

RESUMEN

Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA