Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 28(10): 1645-1660, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30629163

RESUMEN

Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Benzodiazepinonas/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Mutación , Enfermedad de Parkinson/patología , Fosforilación , Cultivo Primario de Células , Pirimidinas/farmacología
2.
J Neurochem ; 149(2): 269-283, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30664245

RESUMEN

Contributions of damaged mitochondria to neuropathologies have stimulated interest in mitophagy. We investigated triggers of neuronal mitophagy by disruption of mitochondrial energy metabolism in primary neurons. Mitophagy was examined in cultured murine cerebellar granule cells after inhibition of mitochondrial respiratory chain by drugs rotenone, 3-nitropropionic acid, antimycin A, and potassium cyanide, targeting complexes I, II, III, and IV, respectively. Inhibitor concentrations producing slow cellular demise were determined from analyses of cellular viability, morphology of neuritic damage, plasma membrane permeability, and oxidative phosphorylation. Live cell imaging of dissipation of mitochondrial membrane potential (ΔΨm ) by drugs targeting mitochondrial complexes was referenced to complete depolarization by carbonyl cyanide m-chlorophenyl hydrazone. While inhibition of complexes I, III and IV effected rapid dissipation of ΔΨm , inhibition of complex II using 3-nitropropionic acid led to minimal depolarization of mitochondria. Nonetheless, all respiratory chain inhibitors triggered mitophagy as indicated by increased aggregation of mitochondrially localized PINK1. Mitophagy was further analyzed using a dual fluorescent protein biosensor reporting mitochondrial relocation to acidic lysosomal environment. Significant acidification of mitochondria was observed in neurons treated with rotenone or 3-nitropropionic acid, revealing mitophagy at distal processes. Neurons treated with antimycin A or cyanide failed to show mitochondrial acidification. Minor dissipation of ΔΨm by 3-nitropropionic acid coupled with vigorous triggering of mitophagy suggested depolarization of mitochondria is not a necessary condition to trigger mitophagy. Moreover, weak elicitation of mitophagy by antimycin A, subsequent to loss of ΔΨm , suggested that mitochondrial depolarization is not a sufficient condition for triggering robust neuronal mitophagy. Our findings provide new insight into complexities of mitophagic clearance of neuronal mitochondria.


Asunto(s)
Metabolismo Energético/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Mitofagia/fisiología , Neuronas/metabolismo , Animales , Células Cultivadas , Ratones , Proteínas Quinasas/metabolismo
3.
Am J Physiol Cell Physiol ; 298(3): C764-74, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032515

RESUMEN

We determined the metabolic changes that precede cell death in the dystrophic proline-23-histidine (P23H) line 3 (P23H-3) rat retina compared with the normal Sprague-Dawley (SD) rat retina. Metabolite levels and metabolic enzymes were analyzed early in development and during the early stages of degeneration in the P23H-3 retina. Control and degenerating retinas showed an age-dependent change in metabolite levels and enzymatic activity, particularly around the time when phototransduction was activated. However, lactate dehydrogenase (LDH) activity was significantly higher in P23H-3 than SD retina before the onset of photoreceptor death. The creatine/phosphocreatine system did not contribute to the increase in ATP, because phosphocreatine levels, creatine kinase, and expression of the creatine transporter remained constant. However, Na(+)-K(+)-ATPase and Mg(2+)-Ca(2+)-ATPase activities were increased in the developing P23H-3 retina. Therefore, photoreceptor apoptosis in the P23H-3 retina occurs in an environment of increased LDH, ATPase activity, and higher-than-normal ATP levels. We tested the effect of metabolic challenge to the retina by inhibiting monocarboxylate transport with alpha-cyano-4-hydroxycinnamic acid or systemically administering the phosphodiesterase inhibitor sildenafil. Secondary to monocarboxylate transport inhibition, the P23H-3 retina did not demonstrate alterations in metabolic activity. However, administration of sildenafil significantly reduced LDH activity in the P23H-3 retina and increased the number of terminal deoxynucleotidyl transferase biotin-dUPT nick end-labeled photoreceptor cells. Photoreceptor cells with a rhodopsin mutation display an increase in apoptotic markers secondary to inhibition of a phototransduction enzyme (phosphodiesterase), suggesting increased susceptibility to altered cation entry.


Asunto(s)
Metabolismo Energético , Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Rodopsinas Sensoriales/genética , Adenosina Trifosfato/metabolismo , Factores de Edad , Animales , Apoptosis , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Ácidos Cumáricos/farmacología , Creatina/metabolismo , Creatina Quinasa/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético/efectos de los fármacos , Histidina , L-Lactato Deshidrogenasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mutación , Fosfocreatina/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Piperazinas/farmacología , Prolina , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Citrato de Sildenafil , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sulfonas/farmacología
4.
J Neurochem ; 109 Suppl 1: 198-206, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19393028

RESUMEN

GABAergic striatal neurons are compromised in basal ganglia pathologies and we analysed how insult nature determined their patterns of injury and recruitment of the intrinsic mitochondrial pathway during programmed cell death (PCD). Stressors affecting targets implicated in striatal neurodegeneration [3-morpholinylsydnoneimine (SIN-1), 3-nitropropionic acid (3-NP), NMDA, 3,5-dihydroxyphenylglycine (DHPG), and staurosporine (STS)] were compared in cultured GABAergic neurons from murine striatum by analyzing the progression of injury and its correlation with mitochondrial involvement, the redistribution of intermembrane space (IMS) proteins, and patterns of protease activation. Stressors produced PCD exhibiting slow-onset kinetics with time-dependent annexin-V labeling and eventual DNA fragmentation. IMS proteins including cytochrome c were differentially distributed, although stressors except STS produced early redistribution of apoptosis-inducing factor and Omi, suggestive of early recruitment of both caspase-dependent and caspase-independent signaling. In general, Bax mobilization to mitochondria appeared to promote IMS protein redistribution. Caspase 3 activation was prominent after STS, whereas NMDA and SIN-1 produced mainly calpain activation, and 3-NP and DHPG elicited a mixed profile of protease activation. PCD and redistribution of IMS proteins in striatal GABAergic neurons were canonical and insult-dependent, reflecting differential interplay between the caspase cascade and alternate cell death pathways.


Asunto(s)
Apoptosis/fisiología , Caspasas/fisiología , Mitocondrias/fisiología , Neostriado/fisiología , Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Calpaína/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Fragmentación del ADN , Activación Enzimática/fisiología , Femenino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Neostriado/citología , Neostriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Embarazo
5.
Autophagy ; 14(3): 534-551, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28980850

RESUMEN

Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Autofagia/efectos de los fármacos , Rilmenidina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Superóxido Dismutasa-1/genética
6.
J Alzheimers Dis ; 20 Suppl 2: S453-73, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20463398

RESUMEN

Oxidative stress plays a central role in neuronal injury and cell death in acute and chronic pathological conditions. The cellular responses to oxidative stress embrace changes in mitochondria and other organelles, notably endoplasmic reticulum, and can lead to a number of cell death paradigms, which cover a spectrum from apoptosis to necrosis and include autophagy. In Alzheimer's disease, and other pathologies including Parkinson's disease, protein aggregation provides further cellular stresses that can initiate or feed into the pathways to cell death engendered by oxidative stress. Specific attention is paid here to mitochondrial dysfunction and programmed cell death, and the diverse modes of cell death mediated by mitochondria under oxidative stress. Novel insights into cellular responses to neuronal oxidative stress from a range of different stressors can be gained by detailed transcriptomics analyses. Such studies at the cellular level provide the key for understanding the molecular and cellular pathways whereby neurons respond to oxidative stress and undergo injury and death. These considerations underpin the development of detailed knowledge in more complex integrated systems, up to the intact human bearing the neuropathology, facilitating therapeutic advances.


Asunto(s)
Mitocondrias/patología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Estrés Oxidativo/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Animales , Apoptosis/fisiología , Autofagia/fisiología , Humanos , Mitocondrias/fisiología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA