Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139063

RESUMEN

Managing metastasis at the early stage and detecting and treating submillimeter tumors at early metastasis are crucial for improving cancer prognosis. Angiogenesis is a critical target for developing drugs to detect and inhibit submillimeter tumor growth; however, drug development remains challenging because there are no suitable models for observing the submillimeter tumor mass and the surrounding blood vessels in vivo. We have established a xenograft subcutaneous submillimeter tumor mouse model with HT-29-RFP by transplanting a single spheroid grown on radiation-crosslinked gelatin hydrogel microwells. Here, we developed an in vivo dual-observation method to observe the submillimeter tumor mass and tumor-surface blood vessels using this model. RFP was detected to observe the tumor mass, and a fluorescent angiography agent FITC-dextran was administered to observe blood vessels via stereoscopic fluorescence microscopy. The anti-angiogenesis agent regorafenib was used to confirm the usefulness of this method. This method effectively detected the submillimeter tumor mass and tumor-surface blood vessels in vivo. Regorafenib treatment revealed tumor growth inhibition and angiogenesis downregulation with reduced vascular extremities, segments, and meshes. Further, we confirmed that tumor-surface blood vessel areas monitored using in vivo dual-observation correlated with intratumoral blood vessel areas observed via fluorescence microscopy with frozen sections. In conclusion, this method would be useful in developing anti-angiogenesis agents against submillimeter tumors.


Asunto(s)
Inhibidores de la Angiogénesis , Neoplasias , Humanos , Ratones , Animales , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/diagnóstico , Proteínas Fluorescentes Verdes , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología
2.
Int J Mol Sci ; 23(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35628616

RESUMEN

Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.


Asunto(s)
Neoplasias Pancreáticas , Radioinmunoterapia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Estudios de Factibilidad , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas
3.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065671

RESUMEN

Copper (Cu) is a critical element for cancer cell proliferation and considerably accumulates in the nucleus. 64Cu2+ is an anticancer radiopharmaceutical that targets the copper requirement of cancer cells. However, intravenously injected 64Cu2+ ions primarily accumulate in the liver. Ligand complexation of 64Cu2+ may be a promising method for increasing tumor delivery by reducing liver uptake. In this study, we used three tripodal amine ligands [tris(2-aminoethyl)amine (Tren), diethylenetriamine (Dien), and tris(2-pyridylmethyl)amine (TPMA)] to enclose 64Cu2+ ions and compared their in vivo tumor and liver uptakes using a tumor-bearing xenograft mouse model of the extrahepatic bile duct carcinoma cell line TFK-1. We examined intracellular Cu distribution using microparticle-induced X-ray emission (micro-PIXE) analysis of these compounds. 64Cu2+-Tren and 64Cu2+-Dien showed higher tumor uptake than 64Cu2+-TPMA and 64Cu2+ ions in TFK-1 tumors. Among the three 64Cu2+ complexes and 64Cu2+ ions, liver uptake was inversely correlated with tumor uptake. Micro-PIXE analysis showed that in vitro cellular uptake was similar to in vivo tumor uptake, and nuclear delivery was the highest for 64Cu2+-Tren. Conclusively, an inverse correlation between tumor and liver uptake was observed using three 64Cu2+ complexes of tripodal amine ligands and 64Cu2+ ions. These results provide useful information for the future development of anticancer 64Cu radiopharmaceuticals.

4.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37895812

RESUMEN

Understanding the physicochemical properties of antibody-drug conjugates is critical to assess their quality at manufacturing and monitor them during subsequent storage. For radiometal-antibody complexes, it is important to control the properties of the antibody-chelator conjugate to maintain the quality of the final product. We have been developing 64Cu-labeled anti-epidermal growth factor receptor antibody NCAB001 (64Cu-NCAB001) for the early diagnosis and therapy of pancreatic cancer with positron-emission tomography. Here, we characterized the larger size variants contained in the antibody-chelator conjugate PCTA-NCAB001 by multi-angle light scattering coupled with size-exclusion chromatography. Secondly, we developed a chromatographic method to remove these size variants. Lastly, we demonstrated the stability of PCTA-NCAB001 after the removal of size variants. Dimer and oligomers were identified in PCTA-NCAB001. These larger size variants, together with some smaller size variants, could be removed by hydrophobic interaction chromatography. The PCTA-NCAB001 product, after the removal of these size variants, could be stored at 4 °C for six months. The methods developed here can be applied to assure the quality of PCTA-NCAB001 and other antibody-drug conjugates to facilitate the development of antibody-radiometal conjugates for positron-emission tomography and radioimmunotherapy of malignant cancers.

5.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275997

RESUMEN

[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.

6.
Pharmaceutics ; 14(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36145676

RESUMEN

Detecting tumor lesions <1 cm in size using current imaging methods remains a clinical challenge, especially in pancreatic cancer. Previously, we developed a method to identify pancreatic tumor lesions ≥3 mm using positron emission tomography (PET) with an intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (64Cu-NCAB001 ipPET). Here, we conducted an extended single-dose toxicity study of 64Cu-NCAB001 ipPET in mice based on approach 1 of the current ICH M3 [R2] guideline, as our new drug formulation contains 45 µg of the antibody. We used NCAB001 labeled with stable copper isotope instead of 64Cu. The total content of size variants was approximately 6.0% throughout the study. The relative binding potency of Cu-NCAB001 to recombinant human EGFR was comparable to that of cetuximab. The general and neurological toxicities of Cu-NCAB001 ipPET at 62.5 or 625 µg/kg were assessed in mice. The no-observed-adverse-effect level of Cu-NCAB001 was 625 µg/kg, a dose approximately 1000-fold higher at the µg/kg level than the dose of 64Cu-NCAB001 in our formulation (45 µg). The size variants did not affect the safety of the formulation. Therefore, clinical studies on the efficacy of 64Cu-NCAB001 ipPET for early detection of pancreatic cancer using PET imaging can be safely conducted.

7.
Pharmaceutics ; 13(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34683999

RESUMEN

Actinium-225 (225Ac) is a promising radionuclide used in targeted alpha therapy (TAT). Although 225Ac labeling of bifunctional chelating ligands is effective, previous in vivo studies reported that free 225Ac can be released from the drugs and that such free 225Ac is predominantly accumulated in the liver and could cause unexpected toxicity. To accelerate the clinical development of 225Ac TAT with a variety of drugs, preparing methods to deal with any unexpected toxicity would be valuable. The aim of this study was to evaluate the feasibility of various chelators for reducing and excreting free 225Ac and compare their chemical structures. Nine candidate chelators (D-penicillamine, dimercaprol, Ca-DTPA, Ca-EDTA, CyDTA, GEDTA TTHA, Ca-TTHA, and DO3A) were evaluated in vitro and in vivo. The biodistribution and dosimetry of free 225Ac were examined in mice before an in vivo chelating study. The liver exhibited pronounced 225Ac uptake, with an estimated human absorbed dose of 4.76 SvRBE5/MBq. Aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, significantly reduced 225Ac retention in the liver (22% and 30%, respectively). Significant 225Ac reductions were observed in the heart and remainder of the body with both Ca-DTPA and Ca-TTHA, and in the lung, kidney, and spleen with Ca-TTHA. In vitro interaction analysis supported the in vivo reduction ability of Ca-DTPA and Ca-TTHA. In conclusion, aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, were effective for whole-body clearance of free 225Ac. This feasibility study provides useful information for reducing undesirable radiation exposure from free 225Ac.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA