Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(34): 20932-20942, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32778594

RESUMEN

Many pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion. In Arabidopsis, CTOS induced stomatal closure through a signaling mediated by its receptor CERK1, Ca2+, and a major S-type anion channel, SLAC1. CSOS, which is converted from CTOS by chitin deacetylases from invading fungi, did not induce stomatal closure, suggesting that this conversion is a fungal strategy to evade stomatal closure. At higher concentrations, CSOS but not CTOS induced guard cell death in a manner dependent on Ca2+ but not CERK1. These results suggest that stomatal immunity against fungal invasion comprises not only CTOS-induced stomatal closure but also CSOS-induced guard cell death.


Asunto(s)
Quitina/metabolismo , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Quitina/fisiología , Quitosano/metabolismo , Hongos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/efectos de los fármacos
2.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373546

RESUMEN

Crops experience herbivory by arthropods and microbial infections. In the interaction between plants and chewing herbivores, lepidopteran larval oral secretions (OS) and plant-derived damage-associated molecular patterns (DAMPs) trigger plant defense responses. However, the mechanisms underlying anti-herbivore defense, especially in monocots, have not been elucidated. The receptor-like cytoplasmic kinase Broad-Spectrum Resistance 1 (BSR1) of Oryza sativa L. (rice) mediates cytoplasmic defense signaling in response to microbial pathogens and enhances disease resistance when overexpressed. Here, we investigated whether BSR1 contributes to anti-herbivore defense responses. BSR1 knockout suppressed rice responses triggered by OS from the chewing herbivore Mythimna loreyi Duponchel (Lepidoptera: Noctuidae) and peptidic DAMPs OsPeps, including the activation of genes required for biosynthesis of diterpenoid phytoalexins (DPs). BSR1-overexpressing rice plants exhibited hyperactivation of DP accumulation and ethylene signaling after treatment with simulated herbivory and acquired enhanced resistance to larval feeding. As the biological significance of herbivory-induced accumulation of rice DPs remains unexplained, their physiological activities in M. loreyi were analyzed. The addition of momilactone B, a rice DP, to the artificial diet suppressed the growth of M. loreyi larvae. Altogether, this study revealed that BSR1 and herbivory-induced rice DPs are involved in the defense against chewing insects, in addition to pathogens.


Asunto(s)
Mariposas Nocturnas , Oryza , Animales , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Herbivoria/fisiología , Transducción de Señal , Mariposas Nocturnas/fisiología , Plantas/metabolismo , Larva/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Mol Biol ; 109(4-5): 595-609, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34822009

RESUMEN

KEY MESSAGE: We show that in rice, the amino acid-conjugates of JA precursor, OPDA, may function as a non-canonical signal for the production of phytoalexins in coordination with the innate chitin signaling. The core oxylipins, jasmonic acid (JA) and JA-Ile, are well-known as potent regulators of plant defense against necrotrophic pathogens and/or herbivores. However, recent studies also suggest that other oxylipins, including 12-oxo-phytodienoic acid (OPDA), may contribute to plant defense. Here, we used a previously characterized metabolic defense marker, p-coumaroylputrescine (CoP), and fungal elicitor, chitooligosaccharide, to specifically test defense role of various oxylipins in rice (Oryza sativa). While fungal elicitor triggered a rapid production of JA, JA-Ile, and their precursor OPDA, rice cells exogenously treated with the compounds revealed that OPDA, rather than JA-Ile, can stimulate the CoP production. Next, reverse genetic approach and oxylipin-deficient rice mutant (hebiba) were used to uncouple oxylipins from other elicitor-triggered signals. It appeared that, without oxylipins, residual elicitor signaling had only a minimal effect but, in synergy with OPDA, exerted a strong stimulatory activity towards CoP production. Furthermore, as CoP levels were compromised in the OPDA-treated Osjar1 mutant cells impaired in the oxylipin-amino acid conjugation, putative OPDA-amino acid conjugates emerged as hypothetical regulators of CoP biosynthesis. Accordingly, we found several OPDA-amino acid conjugates in rice cells treated with exogenous OPDA, and OPDA-Asp was detected, although in small amounts, in the chitooligosaccharide-treated rice. However, as synthetic OPDA-Asp and OPDA-Ile, so far, failed to induce CoP in cells, it suggests that yet another presumed OPDA-amino acid form(s) could be acting as novel regulator(s) of phytoalexins in rice.


Asunto(s)
Oryza , Oxilipinas , Aminoácidos/metabolismo , Quitina/metabolismo , Quitosano , Ciclopentanos/metabolismo , Oligosacáridos , Oryza/genética , Oxilipinas/metabolismo , Sesquiterpenos , Fitoalexinas
4.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476681

RESUMEN

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Asunto(s)
Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
5.
J Integr Plant Biol ; 64(2): 449-475, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34914192

RESUMEN

Success of plants largely depends on their ability to defend against herbivores. Since emergence of the first voracious consumers, plants maintained adapting their structures and chemistry to escape from extinction. The constant pressure was further accelerated by adaptation of herbivores to plant defenses, which all together sparked the rise of a chemical empire comprised of thousands of specialized metabolites currently found in plants. Metabolic diversity in the plant kingdom is truly amazing, and although many plant metabolites have already been identified, a large number of potentially useful chemicals remain unexplored in plant bio-resources. Similarly, biosynthetic routes for plant metabolites involve many enzymes, some of which still wait for identification and biochemical characterization. Moreover, regulatory mechanisms that control gene expression and enzyme activities in specialized metabolism of plants are scarcely known. Finally, understanding of how plant defense chemicals exert their toxicity and/or repellency against herbivores remains limited to typical examples, such as proteinase inhibitors, cyanogenic compounds and nicotine. In this review, we attempt summarizing the current status quo in metabolic defense of plants that is predominantly based on the survey of ubiquitous examples of plant interactions with chewing herbivores.


Asunto(s)
Herbivoria , Masticación , Adaptación Fisiológica , Plantas/metabolismo
6.
New Phytol ; 231(5): 2029-2038, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33932298

RESUMEN

A vast array of herbivorous arthropods live with symbiotic microorganisms. However, little is known about the nature and functional mechanism of bacterial effects on plant defense responses towards herbivores. We explored the role of microbes present in extracts of oral secretion (OS) isolated from larvae of Spodoptera litura, a generalist herbivore, in phytohormone signaling-dependent defense responses in Arabidopsis thaliana (Arabidopsis). In response to mechanical damage (MD) with application of bacteria-free OS (OS- ) prepared by sterilization or filtration of OS, Arabidopsis leaves exhibited enhanced de novo synthesis of oxylipins, and induction of transcript abundance of the responsible genes, in comparison to those in leaves with MD + nonsterilized OS (OS+ ), indicating that OS bacteria serve as suppressors of these genes. By contrast, de novo synthesis/signaling of salicylic acid and signaling of abscisic acid were enhanced by OS bacteria. These signaling networks were cross-regulated by each other. Meta-analysis of OS bacteria identified 70 bacterial strains. Among them was Staphylococcus epidermidis, an anaerobic staphylococcus that was shown to contribute to the suppression/manipulation of phytohormone-dependent plant defense signaling. The presence of OS bacteria was consequently beneficial for S. litura larvae hosted by Brassicaceae.


Asunto(s)
Herbivoria , Reguladores del Crecimiento de las Plantas , Animales , Bacterias , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Larva , Oxilipinas , Spodoptera
7.
Plant Cell Environ ; 44(8): 2687-2699, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114241

RESUMEN

Despite the importance of volatile organic compounds (VOCs) for plants, control mechanisms for their basal and stress-induced biosynthesis and release remain unclear. We sampled and characterized headspace and internal leaf volatile pools in rice (Oryza sativa), after a simulated herbivory treatment, which triggers an endogenous jasmonate burst. Certain volatiles, such as linalool, were strongly upregulated by simulated herbivory stress. In contrast, other volatiles, such as ß-caryophyllene, were constitutively emitted and fluctuated according to time of day. Transcripts of the linalool synthase gene transiently increased 1-3 h after exposure of rice to simulated herbivory, whereas transcripts of caryophyllene synthase peaked independently at dawn. Unexpectedly, although emission and accumulation patterns of rice inducible and constitutive VOCs were substantially different, both groups of volatiles were compromised in jasmonate-deficient hebiba mutants, which lack the allene oxide cyclase (AOC) gene. This suggests that rice employs at least two distinct oxylipin-dependent mechanisms downstream of AOC to control production of constitutive and herbivore-induced volatiles. Levels of the JA precursor, 12-oxo-phytodienoic acid (OPDA), were correlated with constitutive volatile levels suggesting that OPDA or its derivatives could be involved in control of volatile emission in rice.


Asunto(s)
Herbivoria , Oryza/fisiología , Oxilipinas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Monoterpenos Acíclicos/metabolismo , Animales , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares/genética , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo
8.
Plant Cell Environ ; 43(9): 2019-2032, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32323332

RESUMEN

Interspecific New Rice for Africa (NERICA) varieties have been recently developed and used in Sub-Saharan Africa but herbivore resistance properties of these plants remain poorly understood. Here we report that, compared to a local Japanese cultivar Nipponbare, NERICA 1, 4 and 10 are significantly more damaged by insect herbivores in the paddy fields. In contrast to high levels of leaf damage from rice skippers and grasshoppers, constitutive and induced volatile organic compounds for indirect plant defense were higher or similar in NERICAs and Nipponbare. Accumulation of direct defense secondary metabolites, momilactones A and B, and p-coumaroylputrescine (CoP) was reduced in NERICAs, while feruloylputrescine accumulated at similar levels in all varieties. Finally, we found that Nipponbare leaves were covered with sharp nonglandular trichomes impregnated with silicon but comparable defense structures were virtually absent in herbivory-prone NERICA plants. As damage to the larval gut membranes by Nipponbare silicified trichomes that pass intact through the insect digestive system, occurs, and larval performance is enhanced by trichome removal from otherwise chemically defended Nipponbare plants, we propose that silicified trichomes work as an important defense mechanism of rice against chewing insect herbivores.


Asunto(s)
Herbivoria , Oryza/fisiología , Tricomas/fisiología , Animales , Digestión , Tracto Gastrointestinal/ultraestructura , Insectos , Japón , Larva/crecimiento & desarrollo , Lepidópteros , Oryza/química , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/fisiología , Metabolismo Secundario , Tricomas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo
9.
J Exp Bot ; 71(20): 6491-6511, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32697299

RESUMEN

We examined the role of ethylene in the production of rice (Oryza sativa) volatile organic compounds (VOCs), which act as indirect defense signals against herbivores in tritrophic interactions. Rice plants were exposed to exogenous ethylene (1 ppm) after simulated herbivory, which consisted of mechanical wounding supplemented with oral secretions (WOS) from the generalist herbivore larva Mythimna loreyi. Ethylene treatment highly suppressed VOCs in WOS-treated rice leaves, which was further corroborated by the reduced transcript levels of major VOC biosynthesis genes in ethylene-treated rice. In contrast, the accumulation of jasmonates (JA), known to control VOCs in higher plants, and transcript levels of primary JA response genes, including OsMYC2, were not largely affected by ethylene application. At the functional level, flooding is known to promote internode elongation in young rice via ethylene signaling. Consistent with the negative role of ethylene on VOC genes, the accumulation of VOCs in water-submerged rice leaves was suppressed. Furthermore, in mature rice plants, which naturally produce less volatiles, VOCs could be rescued by the application of the ethylene perception inhibitor 1-methylcyclopropene. Our data suggest that ethylene acts as an endogenous suppressor of VOCs in rice plants during development and under stress.


Asunto(s)
Mariposas Nocturnas , Oryza , Compuestos Orgánicos Volátiles , Animales , Ciclopentanos , Etilenos , Herbivoria , Oryza/genética , Oxilipinas , Hojas de la Planta
10.
J Exp Bot ; 71(16): 5027-5038, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32412590

RESUMEN

Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.


Asunto(s)
Nicotiana , Fosfolipasas , Silenciador del Gen , Fosfatidilinositoles , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
11.
Plant J ; 94(4): 626-637, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29513388

RESUMEN

Plant defense against herbivores is modulated by herbivore-associated molecular patterns (HAMPs) from oral secretions (OS) and/or saliva of insects. Furthermore, feeding wounds initiate plant self-damage responses modulated by danger-associated molecular patterns (DAMPs) such as immune defense-promoting plant elicitor peptides (Peps). While temporal and spatial co-existence of both patterns during herbivory implies a possibility of their close interaction, the molecular mechanisms remain undetermined. Here we report that exogenous application of rice (Oryza sativa) peptides (OsPeps) can elicit multiple defense responses in rice cell cultures. Specific activation of OsPROPEP3 gene transcripts in rice leaves by wounding and OS treatments further suggests a possible involvement of the OsPep3 peptide in rice-herbivore interactions. Correspondingly, we found that simultaneous application of OsPep3 and Mythimna loreyi OS significantly amplifies an array of defense responses in rice cells, including mitogen-activated protein kinase activation, and generation of defense-related hormones and metabolites. The induction of OsPROPEP3/4 by OsPep3 points to a positive auto-feedback loop in OsPep signaling which may contribute to additional enhancement of defense signal(s). Finally, the overexpression of the OsPep receptor OsPEPR1 increases the sensitivity of rice plants not only to the cognate OsPeps but also to OS signals. Our findings collectively suggest that HAMP-DAMP signal integration provides a critical step in the amplification of defense signaling in plants.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mariposas Nocturnas/fisiología , Oryza/genética , Péptidos/metabolismo , Inmunidad de la Planta , Transducción de Señal , Animales , Retroalimentación Fisiológica , Herbivoria , Proteínas Quinasas Activadas por Mitógenos/genética , Oryza/inmunología , Oryza/fisiología , Péptidos/genética , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
12.
J Exp Bot ; 70(5): 1683-1696, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30715410

RESUMEN

Feeding of sucking insects, such as the rice brown planthopper (Nilaparvata lugens; BPH), causes only limited mechanical damage on plants that is otherwise essential for injury-triggered defense responses against herbivores. In pursuit of complementary BPH elicitors perceived by plants, we examined the potential effects of BPH honeydew secretions on the BPH monocot host, rice (Oryza sativa). We found that BPH honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively. We then examined the elicitor active components in the honeydew and found that bacteria in the secretions are responsible for the activation of plant defense. Corroborating the importance of honeydew-associated microbiota for induced plant resistance, BPHs partially devoid of their microbiota via prolonged antibiotics ingestion induced significantly less defense in rice relative to antibiotic-free insects applied to similar groups of plants. Our data suggest that rice plants may additionally perceive herbivores via their honeydew-associated microbes, allowing them to discriminate between incompatible herbivores-that do not produce honeydew-and those that are compatible and therefore dangerous.


Asunto(s)
Cucumis melo/microbiología , Regulación de la Expresión Génica de las Plantas/inmunología , Hemípteros/fisiología , Herbivoria , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Animales
13.
J Chem Ecol ; 43(9): 929-943, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28861807

RESUMEN

Plants synthesize variable mixtures of herbivore-induced plant volatiles (HIPVs) as part of their evolutionary conserved defense. To elucidate the impact of chewing herbivores with different level of adaptation on HIPV profiles in rice, we measured HIPVs released from rice seedlings challenged by either the generalist herbivore Mythimna loreyi (MYL) or the specialist Parnara guttata (PAG). Both herbivores markedly elicited the emission of HIPVs, mainly on the second and third days after attack compared to control plants. In addition, side-by-side HIPV comparisons using MYL and PAG caterpillars revealed that generalist feeding induced comparably more HIPVs relative to specialist, particularly on day two as highlighted by multivariate analysis (PLS-DA) of emitted HIPVs, and further confirmed in mimicked herbivory experiments. Here, mechanically wounded plants treated with water (WW) released more VOCs than untreated controls, and on top of this, oral secretions (OS) from both herbivores showed differential effects on volatile emissions from the wounded plants. Similar to actual herbivory, MYL OS promoted higher amounts of HIPVs relative to PAG OS, thus supporting disparate induction of rice indirect defenses in response to generalist and specialist herbivores, which could be due to the differential composition of their OS. (196 words).


Asunto(s)
Herbivoria , Lepidópteros/fisiología , Mariposas Nocturnas/fisiología , Oryza/fisiología , Hojas de la Planta/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Lepidópteros/química , Oryza/química , Hojas de la Planta/química , Compuestos Orgánicos Volátiles/análisis
14.
New Phytol ; 211(4): 1323-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174033

RESUMEN

The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitin-triggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The findings suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Quitina/farmacología , Colletotrichum/metabolismo , Espacio Extracelular/química , Proteínas Fúngicas/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Quitinasas/metabolismo , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Colletotrichum/patogenicidad , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Hifa/metabolismo , Mutación/genética , Filogenia , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Virulencia/genética
15.
Plant Cell Environ ; 39(2): 453-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26386366

RESUMEN

Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.


Asunto(s)
Herbivoria/fisiología , Metabolómica/métodos , Oryza/metabolismo , Oryza/parasitología , Biología de Sistemas/métodos , Amidas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Hemípteros/fisiología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Plantones/metabolismo , Espectrometría de Masa por Ionización de Electrospray
16.
J Integr Plant Biol ; 58(11): 903-913, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27015846

RESUMEN

Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and characterized in vitro three novel rice genes that mediated coumaroyl-CoA/feruloyl-CoA conjugation to polyamines, putrescine and agmatine. Interestingly, two genes were highly specific for their polyamine substrates, encoding putrescine N-hydroxycinnamoyltransferase and agmatine N-hydroxycinnamoyltransferase, while the third enzyme could use both polyamines and it was therefore annotated as putrescine/agmatine N-hydroxycinnamoyltransferase. All genes were preferentially expressed in rice roots and developing flowers, and in addition, the putrescine/agmatine N-hydroxycinnamoyltransferase transcripts were strongly induced by wounding in the young rice leaves. Because the wound response of this gene was only partially suppressed in the jasmonoyl-L-isoleucine deficient plants (Osjar1), it suggests that its upregulation (as well as inducible PAs in rice) may be largely independent of jasmonoyl-L-isoleucine signaling pathway. The finding of three closely related genes with a similar and/or overlapping activity in PA biosynthesis provides another striking example of rapid diversification of plant metabolism in response to environmental stresses in nature.


Asunto(s)
Amidas/metabolismo , Oryza/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Ácidos Cumáricos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Putrescina/análogos & derivados , Putrescina/metabolismo
17.
Plant J ; 79(1): 56-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24750441

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) initiates pattern-triggered immunity in host plants. Pattern recognition receptors (PRRs) and receptor-like cytoplasmic kinases (RLCKs) are the major components required for sensing and transduction of these molecular patterns. However, the regulation of RLCKs by PRRs and their specificity remain obscure. In this study we show that PBL27, an Arabidopsis ortholog of OsRLCK185, is an immediate downstream component of the chitin receptor CERK1 and contributes to the regulation of chitin-induced immunity in Arabidopsis. Knockout of PBL27 resulted in the suppression of several chitin-induced defense responses, including the activation of MPK3/6 and callose deposition as well as in disease resistance against fungal and bacterial infections. On the other hand, the contribution of PBL27 to flg22 signaling appears to be very limited, suggesting that PBL27 selectively regulates defense signaling downstream of specific PRR complexes. In vitro phosphorylation experiments showed that CERK1 preferentially phosphorylated PBL27 in comparison to BIK1, whereas phosphorylation of PBL27 by BAK1 was very low compared with that of BIK1. Thus, the substrate specificity of the signaling receptor-like kinases, CERK1 and BAK1, may determine the preference of downstream RLCKs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Transducción de Señal , Alternaria/fisiología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Quitina/metabolismo , Técnicas de Inactivación de Genes , Glucanos/metabolismo , Modelos Biológicos , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Reconocimiento de Patrones , Especificidad por Sustrato , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/fisiología
18.
Plant Cell ; 24(1): 322-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22267486

RESUMEN

Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.


Asunto(s)
Quitina/inmunología , Magnaporthe/inmunología , Magnaporthe/patogenicidad , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/fisiología , Proteínas de Plantas/metabolismo , Datos de Secuencia Molecular , Oryza/metabolismo , Proteínas de Plantas/genética
19.
Front Plant Sci ; 15: 1399562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872888

RESUMEN

Silicon (Si) uptake is generally beneficial for plants that need protection from insect herbivores. In pursue of mechanisms involved in Si-mediated defense, we comprehensively explored the impact of Si on several defensive and metabolic traits in rice exposed to simulated and real herbivory of Mythimna loreyi Duponchel larvae. Hydroponic experiments showed that Si-deprived rice supplemented with Si 72 h prior to insect infestation were similarly resistant to larvae as plants continuously grown in Si-containing media. Both Si and herbivory altered primary metabolism in rice, including the levels of several sugars, amino acids, and organic acids. While the accumulation of sugars was generally positively correlated with Si presence, multiple amino acids showed a negative correlation trend with Si supplementation. The levels of secondary metabolites, including isopentylamine, p-coumaroylputrescine and feruloylputrescine, were typically higher in the leaves of Si-supplemented plants exposed to herbivory stress compared to Si-deprived plants. In addition, simulated herbivory treatment in Si-supplemented plants induced more volatile emissions relative to Si-deprived plants, which was consistent with the increased transcripts of key genes involved in volatile biosynthesis. In ecological interactions, Si alone did not affect the oviposition choice of M. loreyi but gravid females showed a significant preference for simulated herbivory-treated/Si-deprived compared to Si-supplemented plants. Our data suggest that apart from mechanical defense, Si may affect rice metabolism in multiple ways that might enhance/modulate defense responses of rice under herbivory stress.

20.
Plant Signal Behav ; 18(1): 2243064, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37585707

RESUMEN

Acute stress responses include release of defensive volatiles from herbivore-attacked plants. Here we used two closely related monocot species, rice as a representative C3 plant, and sorghum as a representative C4 plant, and compared their basal and stress-induced headspace volatile organic compounds (VOCs). Although both plants emitted similar types of constitutive and induced VOCs, in agreement with the close phylogenetic relationship of the species, several mono- and sesquiterpenes have been significantly less abundant in headspace of sorghum relative to rice. Furthermore, in spite of generally lower VOC levels, some compounds, such as the green leaf volatile (Z)-3-hexenyl acetate and homoterpene DMNT, remained relatively high in the sorghum headspace, suggesting that a separate mechanism for dispersal of these compounds may have evolved in this plant. Finally, a variable amount of several VOCs among three sorghum cultivars of different geographical origins suggested that release of VOCs could be used as a valuable resource for the increase of sorghum resistance against herbivores.


This paper shows how genetically related plants with similar volatile toolboxes define their own species identity in the ecological space.


Asunto(s)
Oryza , Sesquiterpenos , Sorghum , Compuestos Orgánicos Volátiles , Herbivoria , Filogenia , Plantas , Compuestos Orgánicos Volátiles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA