Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569473

RESUMEN

Peripheral nerve injuries are quite common and often require a surgical intervention. However, even after surgery, patients do not often regain satisfactory sensory and motor functions. This, in turn, results in a heavy socioeconomic burden. To some extent, neurons can regenerate from the proximal nerve stump and try to reconnect to the distal stump. However, this regenerating capacity is limited, and depending on the type and size of peripheral nerve injury, this process may not lead to a positive outcome. To date, no pharmacological approach has been used to improve nerve regeneration following repair surgery. We elected to investigate the effects of local delivery of minocycline on nerve regeneration. This molecule has been studied in the central nervous system and was shown to improve the outcome in many disease models. In this study, we first tested the effects of minocycline on SCL 4.1/F7 Schwann cells in vitro and on sciatic nerve explants. We specifically focused on the Schwann cell repair phenotype, as these cells play a central role in orchestrating nerve regeneration. Finally, we delivered minocycline locally in two different rat models of nerve injury, a sciatic nerve transection and a sciatic nerve autograft, demonstrating the capacity of local minocycline treatment to improve nerve regeneration.

2.
Biotechnol Bioeng ; 119(7): 1980-1996, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445744

RESUMEN

Recent studies have explored the potential of tissue-mimetic scaffolds in encouraging nerve regeneration. One of the major determinants of the regenerative success of cellular nerve repair constructs (NRCs) is the local microenvironment, particularly native low oxygen conditions which can affect implanted cell survival and functional performance. In vivo, cells reside in a range of environmental conditions due to the spatial gradients of nutrient concentrations that are established. Here we evaluate in vitro the differences in cellular behavior that such conditions induce, including key biological features such as oxygen metabolism, glucose consumption, cell death, and vascular endothelial growth factor secretion. Experimental measurements are used to devise and parameterize a mathematical model that describes the behavior of the cells. The proposed model effectively describes the interactions between cells and their microenvironment and could in the future be extended, allowing researchers to compare the behavior of different therapeutic cells. Such a combinatorial approach could be used to accelerate the clinical translation of NRCs by identifying which critical design features should be optimized when fabricating engineered nerve repair conduits.


Asunto(s)
Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular , Regeneración Nerviosa/fisiología , Oxígeno , Nervios Periféricos/fisiología , Andamios del Tejido
3.
PLoS Comput Biol ; 17(7): e1009142, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237052

RESUMEN

Millions of people worldwide are affected by peripheral nerve injuries (PNI), involving billions of dollars in healthcare costs. Common outcomes for patients include paralysis and loss of sensation, often leading to lifelong pain and disability. Engineered Neural Tissue (EngNT) is being developed as an alternative to the current treatments for large-gap PNIs that show underwhelming functional recovery in many cases. EngNT repair constructs are composed of a stabilised hydrogel cylinder, surrounded by a sheath of material, to mimic the properties of nerve tissue. The technology also enables the spatial seeding of therapeutic cells in the hydrogel to promote nerve regeneration. The identification of mechanisms leading to maximal nerve regeneration and to functional recovery is a central challenge in the design of EngNT repair constructs. Using in vivo experiments in isolation is costly and time-consuming, offering a limited insight on the mechanisms underlying the performance of a given repair construct. To bridge this gap, we derive a cell-solute model and apply it to the case of EngNT repair constructs seeded with therapeutic cells which produce vascular endothelial growth factor (VEGF) under low oxygen conditions to promote vascularisation in the construct. The model comprises a set of coupled non-linear diffusion-reaction equations describing the evolving cell population along with its interactions with oxygen and VEGF fields during the first 24h after transplant into the nerve injury site. This model allows us to evaluate a wide range of repair construct designs (e.g. cell-seeding strategy, sheath material, culture conditions), the idea being that designs performing well over a short timescale could be shortlisted for in vivo trials. In particular, our results suggest that seeding cells beyond a certain density threshold is detrimental regardless of the situation considered, opening new avenues for future nerve tissue engineering.


Asunto(s)
Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo de Célula , Células del Cúmulo , Humanos , Modelos Neurológicos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Nervios Periféricos/citología , Nervios Periféricos/fisiología , Ratas
4.
PLoS Comput Biol ; 15(6): e1006751, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226169

RESUMEN

Cancers exhibit spatially heterogeneous, unique vascular architectures across individual samples, cell-lines and patients. This inherently disorganised collection of leaky blood vessels contribute significantly to suboptimal treatment efficacy. Preclinical tools are urgently required which incorporate the inherent variability and heterogeneity of tumours to optimise and engineer anti-cancer therapies. In this study, we present a novel computational framework which incorporates whole, realistic tumours extracted ex vivo to efficiently simulate vascular blood flow and interstitial fluid transport in silico for validation against in vivo biomedical imaging. Our model couples Poiseuille and Darcy descriptions of vascular and interstitial flow, respectively, and incorporates spatially heterogeneous blood vessel lumen and interstitial permeabilities to generate accurate predictions of tumour fluid dynamics. Our platform enables highly-controlled experiments to be performed which provide insight into how tumour vascular heterogeneity contributes to tumour fluid transport. We detail the application of our framework to an orthotopic murine glioma (GL261) and a human colorectal carcinoma (LS147T), and perform sensitivity analysis to gain an understanding of the key biological mechanisms which determine tumour fluid transport. Finally we mimic vascular normalization by modifying parameters, such as vascular and interstitial permeabilities, and show that incorporating realistic vasculatures is key to modelling the contrasting fluid dynamic response between tumour samples. Contrary to literature, we show that reducing tumour interstitial fluid pressure is not essential to increase interstitial perfusion and that therapies should seek to develop an interstitial fluid pressure gradient. We also hypothesise that stabilising vessel diameters and permeabilities are not key responses following vascular normalization and that therapy may alter interstitial hydraulic conductivity. Consequently, we suggest that normalizing the interstitial microenvironment may provide a more effective means to increase interstitial perfusion within tumours.


Asunto(s)
Transporte Biológico/fisiología , Modelos Biológicos , Neoplasias , Microambiente Tumoral/fisiología , Animales , Línea Celular Tumoral , Biología Computacional , Simulación por Computador , Líquido Extracelular/metabolismo , Líquido Extracelular/fisiología , Humanos , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neoplasias/fisiopatología
5.
J Theor Biol ; 475: 25-33, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31100294

RESUMEN

A mathematical model has been developed to assist with the development of a hollow fibre bioreactor (HFB) for hepatotoxicity testing of xenobiotics; specifically, to inform the HFB operating set-up, interpret data from HFB outputs and aid in optimizing HFB design to mimic certain hepatic physiological conditions. Additionally, the mathematical model has been used to identify the key HFB and compound parameters that will affect xenobiotic clearance. The analysis of this model has produced novel results that allow the operating set-up to be calculated, and predictions of compound clearance to be generated. The mathematical model predicts the inlet oxygen concentration and volumetric flow rate that gives a physiological oxygen gradient in the HFB to mimic a liver sinusoid. It has also been used to predict the concentration gradients and clearance of a test drug and paradigm hepatotoxin, paracetamol (APAP). The effect of altering the HFB dimensions and fibre properties on APAP clearance under the condition of a physiological oxygen gradient is analysed. These theoretical predictions can be used to design the most appropriate experimental set up and data analysis to quantitatively compare the functionality of cell types that are cultured within the HFB to those in other systems.


Asunto(s)
Reactores Biológicos , Evaluación Preclínica de Medicamentos/métodos , Hígado/efectos de los fármacos , Modelos Biológicos , Xenobióticos/toxicidad , Acetaminofén/farmacocinética , Acetaminofén/toxicidad , Animales , Técnicas de Cultivo de Célula/métodos , Hepatocitos/efectos de los fármacos , Humanos , Hígado/metabolismo , Modelos Teóricos , Consumo de Oxígeno/fisiología , Ratas
6.
J Theor Biol ; 418: 36-56, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28089874

RESUMEN

Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices, owing to their potential for scale-up. However, further research is required to establish how to specify appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall, cell layer and extra-capillary space are coupled to reaction-advection-diffusion equations for oxygen and lactate transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are tolerant to high shear stresses, but may be detrimental for shear-sensitive cells. The cell layer growth rate is predicted to increase, and be less sensitive to the lactate tolerance of the cells, when the exit ports are opened, as the radial flow through the bioreactor is enhanced and the lactate produced by the cells cleared more rapidly from the cell layer.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Modelos Biológicos , Animales , Bovinos , Línea Celular , Humanos , Ratas
7.
Ophthalmic Plast Reconstr Surg ; 33(1): 22-26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26808175

RESUMEN

PURPOSE: To perform quantitative analysis of the most commonly used brow-suspension configurations. METHODS: The inflection positions for Fox pentagon and Crawford triangle configurations were marked on 49 healthy volunteers (male and female) and photographs taken in 3 states: "normal," "closed," and "raised." The skin marks were measured vectorially with respect to the medial canthus, and displacement changes were evaluated for "normal-to-closed" ("blinking") and from "closed-to-raised" ("eye-opening") states. The distance between a pair of inflection marks, representing the approximate path of sling configurations, were also measured and analyzed in relation to the mechanical properties of a variety of synthetic brow-suspension materials. RESULTS: "Blinking" resulted in the greatest displacement in the medial eyelid incision, resulting in the greatest strain on the line connecting the medial eyelid and medial brow inflections. No significant differences in the strains for individual lines were found between the Fox and Crawford techniques, although the former shows a significantly lower overall strain in the whole loop than the latter. The displacements of some inflections and of the strains of a few lines differed significantly in men and women. CONCLUSIONS: Within the scope of this study, the blinking action was shown to result in the maximum strain of ~40%, which lies within the elastic region of stress-strain curves for some commonly used synthetic brow-suspension materials. No one method was statistically superior, although the Fox pentagon gave a significantly lower overall strain when the sling material was assumed to move somewhat around the inflections within a closed loop.


Asunto(s)
Blefaroptosis/cirugía , Párpados/cirugía , Técnicas de Sutura , Adulto , Anciano , Parpadeo/fisiología , Femenino , Frente/cirugía , Humanos , Masculino , Persona de Mediana Edad
8.
Microcirculation ; 22(2): 99-108, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403335

RESUMEN

OBJECTIVE: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. METHODS: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. RESULTS: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. CONCLUSIONS: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.


Asunto(s)
Algoritmos , Microcirculación/fisiología , Microvasos/anatomía & histología , Microvasos/fisiología , Modelos Cardiovasculares , Humanos
9.
Nanomedicine ; 10(2): 339-48, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24036098

RESUMEN

This study is motivated by understanding and controlling the key physical properties underlying internalisation of nano drug delivery. We consider the internalisation of specific nanometre size delivery vehicles, comprised of self-assembling amphiphilic block copolymers, called polymersomes that have the potential to specifically deliver anticancer therapeutics to tumour cells. The possible benefits of targeted polymersome drug delivery include reduced off-target toxic effects in healthy tissue and increased drug uptake by diseased tissue. Through a combination of in vitro experimentation and mathematical modelling, we develop a validated model of nanoparticle uptake by cells via the clathrin-mediated endocytotic pathway, incorporating receptor binding, clustering and recycling. The model predicts how the characteristics of receptor targeting, and the size and concentration of polymersomes alter uptake by tumour cells. The number of receptors per cell was identified as being the dominant mechanism accounting for the difference between cell types in polymersome uptake rate. FROM THE CLINICAL EDITOR: This article reports on a validated model developed through a combination of in vitro experimentation and mathematical modeling of nanoparticle uptake by cells via the clathrin-mediated endocytotic pathway. The model incorporates receptor binding, clustering, and recycling and predicts how the characteristics of receptor targeting, the size and concentration alter polymersome uptake by cancer cells.


Asunto(s)
Endocitosis , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Polímeros/metabolismo , Línea Celular Tumoral , Clatrina/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Cinética , Modelos Teóricos , Nanomedicina , Nanopartículas/metabolismo , Rodaminas/metabolismo , Procesos Estocásticos
10.
Math Biosci ; 372: 109183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554855

RESUMEN

We propose a continuum model for pattern formation, based on the multiphase model framework, to explore in vitro cell patterning within an extracellular matrix (ECM). We demonstrate that, within this framework, chemotaxis-driven cell migration can lead to the formation of cell clusters and vascular-like structures in 1D and 2D respectively. The influence on pattern formation of additional mechanisms commonly included in multiphase tissue models, including cell-matrix traction, contact inhibition, and cell-cell aggregation, are also investigated. Using sensitivity analysis, the relative impact of each model parameter on the simulation outcomes is assessed to identify the key parameters involved. Chemoattractant-matrix binding is further included, motivated by previous experimental studies, and found to reduce the spatial scale of patterning to within a biologically plausible range for capillary structures. Key findings from the in-depth parameter analysis of the 1D models, both with and without chemoattractant-matrix binding, are demonstrated to translate well to the 2D model, obtaining vascular-like cell patterning for multiple parameter regimes. Overall, we demonstrate a biologically-motivated multiphase model capable of generating long-term pattern formation on a biologically plausible spatial scale both in 1D and 2D, with applications for modelling in vitro vascular network formation.


Asunto(s)
Quimiotaxis , Matriz Extracelular , Modelos Biológicos , Quimiotaxis/fisiología , Matriz Extracelular/fisiología , Matriz Extracelular/metabolismo , Humanos , Movimiento Celular/fisiología , Simulación por Computador
11.
J R Soc Interface ; 21(212): 20230710, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38503338

RESUMEN

In the human cardiovascular system (CVS), the interaction between the left and right ventricles of the heart is influenced by the septum and the pericardium. Computational models of the CVS can capture this interaction, but this often involves approximating solutions to complex nonlinear equations numerically. As a result, numerous models have been proposed, where these nonlinear equations are either simplified, or ventricular interaction is ignored. In this work, we propose an alternative approach to modelling ventricular interaction, using a hybrid neural ordinary differential equation (ODE) structure. First, a lumped parameter ODE model of the CVS (including a Newton-Raphson procedure as the numerical solver) is simulated to generate synthetic time-series data. Next, a hybrid neural ODE based on the same model is constructed, where ventricular interaction is instead set to be governed by a neural network. We use a short range of the synthetic data (with various amounts of added measurement noise) to train the hybrid neural ODE model. Symbolic regression is used to convert the neural network into analytic expressions, resulting in a partially learned mechanistic model. This approach was able to recover parsimonious functions with good predictive capabilities and was robust to measurement noise.


Asunto(s)
Ventrículos Cardíacos , Redes Neurales de la Computación , Humanos , Simulación por Computador
12.
Int J Numer Method Biomed Eng ; : e3832, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770788

RESUMEN

We present a 3D discrete-continuum model to simulate blood pressure in large microvascular tissues in the absence of known capillary network architecture. Our hybrid approach combines a 1D Poiseuille flow description for large, discrete arteriolar and venular networks coupled to a continuum-based Darcy model, point sources of flux, for transport in the capillary bed. We evaluate our hybrid approach using a vascular network imaged from the mouse brain medulla/pons using multi-fluorescence high-resolution episcopic microscopy (MF-HREM). We use the fully-resolved vascular network to predict the hydraulic conductivity of the capillary network and generate a fully-discrete pressure solution to benchmark against. Our results demonstrate that the discrete-continuum methodology is a computationally feasible and effective tool for predicting blood pressure in real-world microvascular tissues when capillary microvessels are poorly defined.

13.
Comput Biol Med ; 171: 108140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422956

RESUMEN

Structural changes to microvascular networks are increasingly highlighted as markers of pathogenesis in a wide range of disease, e.g. Alzheimer's disease, vascular dementia and tumour growth. This has motivated the development of dedicated 3D imaging techniques, alongside the creation of computational modelling frameworks capable of using 3D reconstructed networks to simulate functional behaviours such as blood flow or transport processes. Extraction of 3D networks from imaging data broadly consists of two image processing steps: segmentation followed by skeletonisation. Much research effort has been devoted to segmentation field, and there are standard and widely-applied methodologies for creating and assessing gold standards or ground truths produced by manual annotation or automated algorithms. The Skeletonisation field, however, lacks widely applied, simple to compute metrics for the validation or optimisation of the numerous algorithms that exist to extract skeletons from binary images. This is particularly problematic as 3D imaging datasets increase in size and visual inspection becomes an insufficient validation approach. In this work, we first demonstrate the extent of the problem by applying 4 widely-used skeletonisation algorithms to 3 different imaging datasets. In doing so we show significant variability between reconstructed skeletons of the same segmented imaging dataset. Moreover, we show that such a structural variability propagates to simulated metrics such as blood flow. To mitigate this variability we introduce a new, fast and easy to compute super metric that compares the volume, connectivity, medialness, bifurcation point identification and homology of the reconstructed skeletons to the original segmented data. We then show that such a metric can be used to select the best performing skeletonisation algorithm for a given dataset, as well as to optimise its parameters. Finally, we demonstrate that the super metric can also be used to quickly identify how a particular skeletonisation algorithm could be improved, becoming a powerful tool in understanding the complex implication of small structural changes in a network.


Asunto(s)
Imagenología Tridimensional , Neoplasias , Humanos , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Simulación por Computador
14.
J R Soc Interface ; 20(206): 20230258, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669694

RESUMEN

Cellular engineered neural tissues have significant potential to improve peripheral nerve repair strategies. Traditional approaches depend on quantifying tissue behaviours using experiments in isolation, presenting a challenge for an overarching framework for tissue design. By comparison, mathematical cell-solute models benchmarked against experimental data enable computational experiments to be performed to test the role of biological/biophysical mechanisms, as well as to explore the impact of different design scenarios and thus accelerate the development of new treatment strategies. Such models generally consist of a set of continuous, coupled, partial differential equations relying on a number of parameters and functional forms. They necessitate dedicated in vitro experiments to be informed, which are seldom available and often involve small datasets with limited spatio-temporal resolution, generating uncertainties. We address this issue and propose a pipeline based on Bayesian inference enabling the derivation of experimentally informed cell-solute models describing therapeutic cell behaviour in nerve tissue engineering. We apply our pipeline to three relevant cell types and obtain models that can readily be used to simulate nerve repair scenarios and quantitatively compare therapeutic cells. Beyond parameter estimation, the proposed pipeline enables model selection as well as experiment utility quantification, aimed at improving both model formulation and experimental design.


Asunto(s)
Proyectos de Investigación , Ingeniería de Tejidos , Teorema de Bayes , Biofisica , Incertidumbre
15.
WIREs Mech Dis ; 15(2): e1593, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36624330

RESUMEN

Drug therapies for treating peripheral nerve injury repair have shown significant promise in preclinical studies. Despite this, drug treatments are not used routinely clinically to treat patients with peripheral nerve injuries. Drugs delivered systemically are often associated with adverse effects to other tissues and organs; it remains challenging to predict the effective concentration needed at an injured nerve and the appropriate delivery strategy. Local drug delivery approaches are being developed to mitigate this, for example via injections or biomaterial-mediated release. We propose the integration of mathematical modeling into the development of local drug delivery protocols for peripheral nerve injury repair. Mathematical models have the potential to inform understanding of the different transport mechanisms at play, as well as quantitative predictions around the efficacy of individual local delivery protocols. We discuss existing approaches in the literature, including drawing from other research fields, and present a process for taking forward an integrated mathematical-experimental approach to accelerate local drug delivery approaches for peripheral nerve injury repair. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Computational Models Neurological Diseases > Biomedical Engineering.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Preparaciones Farmacéuticas , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nervios Periféricos , Modelos Teóricos
16.
J R Soc Interface ; 20(207): 20230339, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37848055

RESUMEN

Current mathematical models of the cardiovascular system that are based on systems of ordinary differential equations are limited in their ability to mimic important features of measured patient data, such as variable heart rates (HR). Such limitations present a significant obstacle in the use of such models for clinical decision-making, as it is the variations in vital signs such as HR and systolic and diastolic blood pressure that are monitored and recorded in typical critical care bedside monitoring systems. In this paper, novel extensions to well-established multi-compartmental models of the cardiovascular and respiratory systems are proposed that permit the simulation of variable HR. Furthermore, a correction to current models is also proposed to stabilize the respiratory behaviour and enable realistic simulation of vital signs over the longer time scales required for clinical management. The results of the extended model developed here show better agreement with measured bio-signals, and these extensions provide an important first step towards estimating model parameters from patient data, using methods such as neural ordinary differential equations. The approach presented is generalizable to many other similar multi-compartmental models of the cardiovascular and respiratory systems.


Asunto(s)
Sistema Cardiovascular , Modelos Epidemiológicos , Humanos , Frecuencia Cardíaca , Simulación por Computador , Sistema Respiratorio
17.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034801

RESUMEN

Background: The kidney vasculature is exquisitely structured to orchestrate renal function. Structural profiling of the vasculature in intact rodent kidneys, has provided insights into renal haemodynamics and oxygenation, but has never been extended to the human kidney beyond a few vascular generations. We hypothesised that synchrotron-based imaging of a human kidney would enable assessment of vasculature across the whole organ. Methods: An intact kidney from a 63-year-old male was scanned using hierarchical phase-contrast tomography (HiP-CT), followed by semi-automated vessel segmentation and quantitative analysis. These data were compared to published micro-CT data of whole rat kidney. Results: The intact human kidney vascular network was imaged with HiP-CT at 25 µm voxels, representing a 20-fold increase in resolution compared to clinical CT scanners. Our comparative quantitative analysis revealed the number of vessel generations, vascular asymmetry and a structural organisation optimised for minimal resistance to flow, are conserved between species, whereas the normalised radii are not. We further demonstrate regional heterogeneity in vessel geometry between renal cortex, medulla, and hilum, showing how the distance between vessels provides a structural basis for renal oxygenation and hypoxia. Conclusions: Through the application of HiP-CT, we have provided the first quantification of the human renal arterial network, with a resolution comparable to that of light microscopy yet at a scale several orders of magnitude larger than that of a renal punch biopsy. Our findings bridge anatomical scales, profiling blood vessels across the intact human kidney, with implications for renal physiology, biophysical modelling, and tissue engineering.

18.
Acta Biomater ; 132: 114-128, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33652164

RESUMEN

Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.


Asunto(s)
Matriz Extracelular , Ingeniería de Tejidos , Materiales Biocompatibles , Humanos , Andamios del Tejido
19.
PLoS One ; 16(7): e0254208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34292999

RESUMEN

Nanoparticles have the potential to increase the efficacy of anticancer drugs whilst reducing off-target side effects. However, there remain uncertainties regarding the cellular uptake kinetics of nanoparticles which could have implications for nanoparticle design and delivery. Polymersomes are nanoparticle candidates for cancer therapy which encapsulate chemotherapy drugs. Here we develop a mathematical model to simulate the uptake of polymersomes via endocytosis, a process by which polymersomes bind to the cell surface before becoming internalised by the cell where they then break down, releasing their contents which could include chemotherapy drugs. We focus on two in vitro configurations relevant to the testing and development of cancer therapies: a well-mixed culture model and a tumour spheroid setup. Our mathematical model of the well-mixed culture model comprises a set of coupled ordinary differential equations for the unbound and bound polymersomes and associated binding dynamics. Using a singular perturbation analysis we identify an optimal number of ligands on the polymersome surface which maximises internalised polymersomes and thus intracellular chemotherapy drug concentration. In our mathematical model of the spheroid, a multiphase system of partial differential equations is developed to describe the spatial and temporal distribution of bound and unbound polymersomes via advection and diffusion, alongside oxygen, tumour growth, cell proliferation and viability. Consistent with experimental observations, the model predicts the evolution of oxygen gradients leading to a necrotic core. We investigate the impact of two different internalisation functions on spheroid growth, a constant and a bond dependent function. It was found that the constant function yields faster uptake and therefore chemotherapy delivery. We also show how various parameters, such as spheroid permeability, lead to travelling wave or steady-state solutions.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Endocitosis , Modelos Biológicos , Nanopartículas/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Transporte Biológico , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Cinética , Nanopartículas/química
20.
ACS Biomater Sci Eng ; 7(9): 4293-4304, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34151570

RESUMEN

Synthetic hydrogels formed from poly(ethylene glycol) (PEG) are widely used to study how cells interact with their extracellular matrix. These in vivo-like 3D environments provide a basis for tissue engineering and cell therapies but also for research into fundamental biological questions and disease modeling. The physical properties of PEG hydrogels can be modulated to provide mechanical cues to encapsulated cells; however, the impact of changing hydrogel stiffness on the diffusivity of solutes to and from encapsulated cells has received only limited attention. This is particularly true in selectively cross-linked "tetra-PEG" hydrogels, whose design limits network inhomogeneities. Here, we used a combination of theoretical calculations, predictive modeling, and experimental measurements of hydrogel swelling, rheological behavior, and diffusion kinetics to characterize tetra-PEG hydrogels' permissiveness to the diffusion of molecules of biologically relevant size as we changed polymer concentration, and thus hydrogel mechanical strength. Our models predict that hydrogel mesh size has little effect on the diffusivity of model molecules and instead predicts that diffusion rates are more highly dependent on solute size. Indeed, our model predicts that changes in hydrogel mesh size only begin to have a non-negligible impact on the concentration of a solute that diffuses out of hydrogels for the smallest mesh sizes and largest diffusing solutes. Experimental measurements characterizing the diffusion of fluorescein isothiocyanate (FITC)-labeled dextran molecules of known size aligned well with modeling predictions and suggest that doubling the polymer concentration from 2.5% (w/v) to 5% produces stiffer gels with faster gelling kinetics without affecting the diffusivity of solutes of biologically relevant size but that 10% hydrogels can slow their diffusion. Our findings provide confidence that the stiffness of tetra-PEG hydrogels can be modulated over a physiological range without significantly impacting the transport rates of solutes to and from encapsulated cells.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Difusión , Polietilenglicoles , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA