Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Alcohol Clin Exp Res ; 45(11): 2246-2255, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34523142

RESUMEN

BACKGROUND: We recently showed that alcohol and cannabis can interact prenatally, and in a recent review paper, we identified parvalbumin-positive (PV) interneurons in the hippocampus as a potential point of convergence for these teratogens. METHODS: A 2 (Ethanol [EtOH], Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either EtOH or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry was performed to detect PV interneurons in 1 male and 1 female pup from each litter at postnatal day 70. RESULTS: Significant between-group and subregion-specific effects were found in the dorsal cornu ammonis 1 (CA1) subfield and the ventral dentate gyrus (DG). In the dorsal CA1 subfield, there was an increase in the number of PV interneurons in both the EtOH and EtOH +THC groups, but a decrease with THC alone. There were fewer changes in interneuron numbers overall in the DG, though there was a sex difference, with a decrease in the number of PV interneurons in the THC-exposed group in males. There was also a greater cell layer volume in the DG in the EtOH +THC group than the control group, and in the CA1 region in the EtOH group compared to the control and THC groups. CONCLUSIONS: Prenatal exposure to alcohol and THC differentially affects parvalbumin-positive interneuron numbers in the hippocampus, indicating that both individual and combined exposure can impact the balance of excitation and inhibition in a structure critically involved in learning and memory processes.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Hipocampo/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Cannabis/metabolismo , Giro Dentado/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Parvalbúminas/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853554

RESUMEN

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Adiponectina , Giro Dentado , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Noqueados , Plasticidad Neuronal , Animales , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/metabolismo , Giro Dentado/metabolismo , Giro Dentado/efectos de los fármacos , Ratones , Plasticidad Neuronal/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Adiponectina/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Receptores AMPA/metabolismo
3.
Brain Behav Immun Health ; 39: 100808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38983774

RESUMEN

The metabotropic glutamate receptor 7 (mGluR7) is a presynaptic G-protein-coupled glutamate receptor that modulates neurotransmitter release and synaptic plasticity at presynaptic terminals. It is encoded by GRM7, and recently variants have been identified in patients with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay (DD), intellectual disability (ID), and brain malformations. To gain updated insights into the function of GRM7 and the phenotypic spectrum of genetic variations within this gene, we conducted a systematic review of relevant literature utilizing PubMed, Web of Science, and Scopus databases. Among the 14 articles meeting the inclusion criteria, a total of 42 patients (from 28 families) harboring confirmed mutations in the GRM7 gene have been documented. Specifically, there were 17 patients with heterozygous mutations, 20 patients with homozygous mutations, and 5 patients with compound heterozygous mutations. Common clinical features included intellectual behavioral disability, seizure/epilepsy, microcephaly, developmental delay, peripheral hypertonia and hypomyelination. Genotype-phenotype correlation was not clear and each variant had unique characteristics including gene dosage, mutant protein surface expression, and degradation pathway that result with a spectrum of phenotype manifestations through ASD or ADHD to severe DD/ID with brain malformations. Neuroinflammation may play a role in the development and/or progression of GRM7-related neurodegeneration along with excitotoxicity. The clinical and functional data presented here demonstrate that both autosomal dominant and recessive inheritance of GRM7 mutation can cause disease spectrum phenotypes through ASD or ADHD to severe DD/ID and seizure with brain malformations.

4.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550058

RESUMEN

Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.


Asunto(s)
Ketamina , Ratas , Masculino , Animales , Ketamina/farmacología , Corticosterona/farmacología , Corticosterona/metabolismo , Ratas Long-Evans , Benchmarking , Hipocampo/metabolismo , Antidepresivos/farmacología , Antidepresivos/metabolismo , Depresión
5.
Front Cell Dev Biol ; 10: 885440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573682

RESUMEN

Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.

6.
Neurosci Res ; 152: 3-14, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31991206

RESUMEN

Genetically encoded fluorescent indicators have transformed the way neuroscientists record neuronal activities and interrogate the nervous system in vivo. In this review, we discuss recent advances and new additions to the toolkit of indicators for calcium ion entry, membrane voltage change, neurotransmitter release, and other neuronal molecular processes. We highlight new engineering approaches for indicator design and development, and identify key areas for future improvement. From molecular tool developers' perspective, we aim to provide practical information for neuroscientists to evaluate and choose the most appropriate indicators for enabling new insights into brain function.


Asunto(s)
Microscopía/métodos , Neuronas/fisiología , Imagen Óptica/métodos , Optogenética/métodos , Animales , Calcio/metabolismo , Señalización del Calcio , Ingeniería , Ingeniería Genética , Humanos , Indicadores y Reactivos , Potenciales de la Membrana/fisiología , Neurotransmisores/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA