Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
RNA ; 27(11): 1302-1317, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34315816

RESUMEN

Serine/arginine splicing factor 10 (SRSF10) is a member of the family of mammalian splicing regulators known as SR proteins. Like several of its SR siblings, the SRSF10 protein is composed of an RNA binding domain (RRM) and of arginine and serine-rich auxiliary domains (RS) that guide interactions with other proteins. The phosphorylation status of SRSF10 is of paramount importance for its activity and is subjected to changes during mitosis, heat-shock, and DNA damage. SRSF10 overexpression has functional consequences in a growing list of cancers. By controlling the alternative splicing of specific transcripts, SRSF10 has also been implicated in glucose, fat, and cholesterol metabolism, in the development of the embryonic heart, and in neurological processes. SRSF10 is also important for the proper expression and processing of HIV-1 and other viral transcripts. We discuss how SRSF10 could become a potentially appealing therapeutic target to combat cancer and viral infections.


Asunto(s)
Empalme Alternativo , Proteínas de Ciclo Celular/metabolismo , Organogénesis , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Estrés Fisiológico , Replicación Viral , Proteínas de Ciclo Celular/genética , Humanos , Proteínas Represoras/genética , Factores de Empalme Serina-Arginina/genética
2.
Retrovirology ; 19(1): 18, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986377

RESUMEN

BACKGROUND: The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS: Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS: The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS: These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.


Identifying cellular factors that regulate HIV-1 RNA processing provides important insights into novel strategies to control this infection. Different members of the SR kinase family have distinct roles in regulating virus expression because they affect distinct steps of transcription/RNA processing. We identify inhibitors of these kinases that suppress HIV-1 gene expression and replication in multiple assay systems at nanomolar concentrations with limited or no cytotoxicity. Our results highlight the therapeutic potential of targeting the post-integration stage of the HIV-1 lifecycle to selectively enhance or reverse provirus latency. A greater understanding of the molecular mechanisms underlying the effects observed will facilitate the development of more targeted approaches to modulate HIV-1 latency on the path toward a "functional" cure for this infection.


Asunto(s)
VIH-1 , Empalme Alternativo , Expresión Génica , VIH-1/fisiología , Inhibidores de Proteínas Quinasas/farmacología , ARN Viral/genética , Latencia del Virus
3.
Brain ; 141(5): 1320-1333, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29562314

RESUMEN

See Fratta and Isaacs (doi:10.1093/brain/awy091) for a scientific commentary on this article.The RNA binding proteins TDP-43 (encoded by TARDBP) and hnRNP A1 (HNRNPA1) are each mutated in certain amyotrophic lateral sclerosis cases and are often mislocalized in cytoplasmic aggregates within motor neurons of affected patients. Cytoplasmic inclusions of TDP-43, which are accompanied by a depletion of nuclear TDP-43, are observed in most amyotrophic lateral sclerosis cases and nearly half of frontotemporal dementia cases. Here, we report that TDP-43 binds HNRNPA1 pre-mRNA and modulates its splicing, and that depletion of nuclear TDP-43 results in increased inclusion of a cassette exon in the HNRNPA1 transcript, and consequently elevated protein levels of an isoform containing an elongated prion-like domain, referred to as hnRNP A1B. Combined in vivo and in vitro approaches demonstrated greater fibrillization propensity for hnRNP A1B, which drives protein aggregation and is toxic to cells. Moreover, amyotrophic lateral sclerosis patients with documented TDP-43 pathology showed neuronal hnRNP A1B cytoplasmic accumulation, indicating that TDP-43 mislocalization may contribute to neuronal vulnerability and loss via altered HNRNPA1 pre-mRNA splicing and function. Given that TDP-43 and hnRNP A1 each bind, and thus modulate, a third of the transcriptome, our data suggest a much broader disruption in RNA metabolism than previously considered.


Asunto(s)
Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Agregación Patológica de Proteínas/metabolismo , Empalme Alternativo/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Dactinomicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Inmunoprecipitación , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Oligopéptidos/genética , Oligopéptidos/metabolismo , Sitios de Empalme de ARN/efectos de los fármacos , Sitios de Empalme de ARN/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Médula Espinal/patología , Transfección
4.
Nucleic Acids Res ; 45(7): 4051-4067, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27928057

RESUMEN

We recently identified the 4-pyridinone-benzisothiazole carboxamide compound 1C8 as displaying strong anti-HIV-1 potency against a variety of clinical strains in vitro. Here we show that 1C8 decreases the expression of HIV-1 and alters splicing events involved in the production of HIV-1 mRNAs. Although 1C8 was designed to be a structural mimic of the fused tetracyclic indole compound IDC16 that targets SRSF1, it did not affect the splice site shifting activity of SRSF1. Instead, 1C8 altered splicing regulation mediated by SRSF10. Depleting SRSF10 by RNA interference affected viral splicing and, like 1C8, decreased expression of Tat, Gag and Env. Incubating cells with 1C8 promoted the dephosphorylation of SRSF10 and increased its interaction with hTra2ß, a protein previously implicated in the control of HIV-1 RNA splicing. While 1C8 affects the alternative splicing of cellular transcripts controlled by SRSF10 and hTra2ß, concentrations greater than those needed to inhibit HIV-1 replication were required to elicit significant alterations. Thus, the ability of 1C8 to alter the SRSF10-dependent splicing of HIV-1 transcripts, with minor effects on cellular splicing, supports the view that SRSF10 may be used as a target for the development of new anti-viral agents.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Benzotiazoles/farmacología , Proteínas de Ciclo Celular/metabolismo , VIH-1/efectos de los fármacos , Niacinamida/análogos & derivados , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Replicación Viral/efectos de los fármacos , Fármacos Anti-VIH/química , Benzotiazoles/química , Células Cultivadas , VIH-1/genética , VIH-1/metabolismo , VIH-1/fisiología , Células HeLa , Humanos , Niacinamida/química , Niacinamida/farmacología , Precursores del ARN/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
5.
Nucleic Acids Res ; 42(6): e40, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24375754

RESUMEN

Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a non-hybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 5' splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants.


Asunto(s)
Empalme Alternativo , Oligonucleótidos/química , Algoritmos , Línea Celular , Proteínas de Unión al ADN/metabolismo , Exones , Células HeLa , Humanos , Oligonucleótidos Antisentido/química , Sitios de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
7.
Oncotarget ; 15: 313-325, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753413

RESUMEN

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Tiazoles/farmacología , Antivirales/farmacología , Células HCT116 , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica
8.
Cancer Treat Res ; 158: 41-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24222354

RESUMEN

For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.


Asunto(s)
Proteómica , Precursores del ARN , Empalme Alternativo , Animales , Humanos , Mutación , Empalme del ARN , ARN Mensajero
9.
J Biol Chem ; 286(1): 331-40, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20980256

RESUMEN

Alternative splicing often produces effectors with opposite functions in apoptosis. Splicing decisions must therefore be tightly connected to stresses, stimuli, and pathways that control cell survival and cell growth. We have shown previously that PKC signaling prevents the production of proapoptotic Bcl-x(S) to favor the accumulation of the larger antiapoptotic Bcl-x(L) splice variant in 293 cells. Here we show that the genotoxic stress induced by oxaliplatin elicits an ATM-, CHK2-, and p53-dependent splicing switch that favors the production of the proapoptotic Bcl-x(S) variant. This DNA damage-induced splicing shift requires the activity of protein-tyrosine phosphatases. Interestingly, the ATM/CHK2/p53/tyrosine phosphatases pathway activated by oxaliplatin regulates Bcl-x splicing through the same regulatory sequence element (SB1) that receives signals from the PKC pathway. Convergence of the PKC and DNA damage signaling routes may control the abundance of a key splicing repressor because SB1-mediated repression is lost when protein synthesis is impaired but is rescued by blocking proteasome-mediated protein degradation. The SB1 splicing regulatory module therefore receives antagonistic signals from the PKC and the p53-dependent DNA damage response pathways to control the balance of pro- and antiapoptotic Bcl-x splice variants.


Asunto(s)
Empalme Alternativo , Apoptosis , Daño del ADN , Transducción de Señal , Proteína bcl-X/metabolismo , Empalme Alternativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Secuencia de Bases , Células HEK293 , Humanos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
10.
Front Microbiol ; 12: 658721, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854493

RESUMEN

Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.

11.
NAR Cancer ; 3(2): zcab019, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316707

RESUMEN

The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic BCLAF1-L splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of BCLAF1-L. While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.g. in MDM4, WTAP, SLK1 and CLK1), other events are shifted in a SRSF10-independent manner (e.g. in MDM2, NAB2 and TRA2A). GPS167/192 increased the interaction of SRSF10 with the CLK1 and CLK4 kinases, leading us to show that GPS167/192 can inhibit CLK kinases preferentially impacting the activity of SRSF10. Notably, GPS167 impairs the growth of CRC cell lines and organoids, inhibits anchorage-independent colony formation, cell migration, and promotes cytoxicity in a manner that requires SRSF10 and p53. In contrast, GPS167 only minimally affects normal colonocytes and normal colorectal organoids. Thus, GPS167 reprograms the tumorigenic activity of SRSF10 in CRC cells to elicit p53-dependent apoptosis.

12.
Viruses ; 14(1)2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35062264

RESUMEN

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Asunto(s)
Adenoviridae/efectos de los fármacos , Antivirales/farmacología , Coronavirus/efectos de los fármacos , VIH-1/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Tiazoles/farmacología , Replicación Viral/efectos de los fármacos , Adenoviridae/fisiología , Antivirales/química , Línea Celular , Coronavirus/clasificación , Coronavirus/fisiología , Expresión Génica/efectos de los fármacos , VIH-1/fisiología , Humanos , Factores de Empalme de ARN/metabolismo , ARN Viral/metabolismo , Tiazoles/química
13.
Mol Cancer Ther ; 7(6): 1398-409, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18566212

RESUMEN

Inducing an apoptotic response is the goal of most current chemotherapeutic interventions against cancer. However, little is known about the effect of chemotherapeutic agents on the alternative splicing of apoptotic genes. Here, we have tested 20 of the mainstream anticancer drugs for their ability to influence the production of Bcl-x splice isoforms. We find that many drugs shift splicing toward the proapoptotic Bcl-x(S) splice variant in 293 cells. The drugs modulate splicing decisions most likely through signaling events because the splicing switch is not compromised by inhibiting de novo protein synthesis or the activity of caspases. Several drugs also shift Bcl-x splicing in cancer cell lines (MCF-7, HeLa, PC-3, PA-1, and SKOV-3), but the set of active drugs varies between cell lines. We also examined the effect of anticancer agents on the alternative splicing of 95 other human apoptotic genes in different cell lines. Almost every drug can alter a subset of alternative splicing events in each cell line. Although drugs of the same class often influence the alternative splicing of the same units in individual cell lines, these units differ considerably between cell lines, indicating cell line-specific differences in the pathways that control splicing.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína bcl-X/genética , Caspasas/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Activación Enzimática/efectos de los fármacos , Humanos , Biosíntesis de Proteínas/efectos de los fármacos
14.
Sci Rep ; 8(1): 2206, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396485

RESUMEN

Little is known about how RNA binding proteins cooperate to control splicing, and how stress pathways reconfigure these assemblies to alter splice site selection. We have shown previously that SRSF10 plays an important role in the Bcl-x splicing response to DNA damage elicited by oxaliplatin in 293 cells. Here, RNA affinity assays using a portion of the Bcl-x transcript required for this response led to the recovery of the SRSF10-interacting protein 14-3-3ε and the Sam68-interacting protein hnRNP A1. Although SRSF10, 14-3-3ε, hnRNP A1/A2 and Sam68 do not make major contributions to the regulation of Bcl-x splicing under normal growth conditions, upon DNA damage they become important to activate the 5' splice site of pro-apoptotic Bcl-xS. Our results indicate that DNA damage reconfigures the binding and activity of several regulatory RNA binding proteins on the Bcl-x pre-mRNA. Moreover, SRSF10, hnRNP A1/A2 and Sam68 collaborate to drive the DNA damage-induced splicing response of several transcripts that produce components implicated in apoptosis, cell-cycle control and DNA repair. Our study reveals how the circuitry of splicing factors is rewired to produce partnerships that coordinate alternative splicing across processes crucial for cell fate.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Oxaliplatino/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Proteínas 14-3-3/metabolismo , Reparación del ADN , Células HEK293 , Humanos , Mutágenos/metabolismo , Precursores del ARN/metabolismo , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
15.
Adv Exp Med Biol ; 623: 123-47, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18380344

RESUMEN

Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Precursores del ARN/genética , Empalme del ARN/genética , Animales , Humanos , Precursores del ARN/metabolismo , Empalmosomas/fisiología
16.
J Cell Biol ; 212(1): 13-27, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26728853

RESUMEN

Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.


Asunto(s)
Síndromes Mielodisplásicos/genética , Neoplasias/genética , Empalme del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Humanos , Síndromes Mielodisplásicos/metabolismo , Neoplasias/metabolismo , Neuropatología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
17.
Cell Rep ; 17(8): 1990-2003, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851963

RESUMEN

RNA binding proteins and signaling components control the production of pro-death and pro-survival splice variants of Bcl-x. DNA damage promoted by oxaliplatin increases the level of pro-apoptotic Bcl-xS in an ATM/CHK2-dependent manner, but how this shift is enforced is not known. Here, we show that in normally growing cells, when the 5' splice site of Bcl-xS is largely repressed, SRSF10 partially relieves repression and interacts with repressor hnRNP K and stimulatory hnRNP F/H proteins. Oxaliplatin abrogates the interaction of SRSF10 with hnRNP F/H and decreases the association of SRSF10 and hnRNP K with the Bcl-x pre-mRNA. Dephosphorylation of SRSF10 is linked with these changes. A broader analysis reveals that DNA damage co-opts SRSF10 to control splicing decisions in transcripts encoding components involved in DNA repair, cell-cycle control, and apoptosis. DNA damage therefore alters the interactions between splicing regulators to elicit a splicing response that determines cell fate.


Asunto(s)
Empalme Alternativo/genética , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Empalme Alternativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Reparación del ADN/efectos de los fármacos , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Modelos Biológicos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína bcl-X/genética
18.
Biomolecules ; 5(4): 2935-77, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26529031

RESUMEN

The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.


Asunto(s)
Daño del ADN , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/genética
19.
Endocrinology ; 145(1): 393-400, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14551229

RESUMEN

Knowledge of how the brain achieves its diverse central control of basic physiology is severely limited by the virtual absence of appropriate cell models. Isolation of clonal populations of unique peptidergic neurons from the hypothalamus will facilitate these studies. Herein we describe the mass immortalization of mouse primary hypothalamic cells in monolayer culture, resulting in the generation of a vast representation of hypothalamic cell types. Subcloning of the heterogeneous cell populations resulted in the establishment of 38 representative clonal neuronal cell lines, of which 16 have been further characterized by analysis of 28 neuroendocrine markers. These cell lines represent the first available models to study the regulation of neuropeptides associated with the control of feeding behavior, including neuropeptide Y, ghrelin, urocortin, proopiomelanocortin, melanin-concentrating hormone, neurotensin, proglucagon, and GHRH. Importantly, a representative cell line responds appropriately to leptin stimulation and results in the repression of neuropeptide Y gene expression. These cell models can be used for detailed molecular analysis of neuropeptide gene regulation and signal transduction events involved in the direct hormonal control of unique hypothalamic neurons, not yet possible in the whole brain. Such studies may contribute information necessary for the strategic design of therapeutic interventions for complex neuroendocrine disorders, such as obesity.


Asunto(s)
Enfermedades Hipotalámicas/genética , Enfermedades Hipotalámicas/fisiopatología , Hipotálamo/fisiología , Neuronas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Línea Celular Transformada , Células Clonales , Femenino , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Fenotipo
20.
Mol Cell Biol ; 32(5): 954-67, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22203037

RESUMEN

Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-x(S) splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.


Asunto(s)
Empalme Alternativo , Apoptosis/genética , Exones , Proteína bcl-X/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/genética , Proteínas Co-Represoras , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Interferencia de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Empalmosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA