Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Cell Biol ; 101(6): 496-500, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207361

RESUMEN

For the past 6 months, there has been an ongoing revolution in Iran after the brutal death of Zhina (Mahsa) Amini in morality police custody. Iranian universities' professors and students have been on the frontline of this revolution and have been fired or sentenced. On the other hand, Iranian high schools and primary schools have been under suspected toxic gas attack. In the current article, the latest status of oppression of the university students and professors and toxic gas attack on primary and high schools in Iran has been evaluated.


Asunto(s)
Instituciones Académicas , Femenino , Humanos , Irán , Universidades
2.
Mol Pharm ; 19(11): 3757-3769, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36053057

RESUMEN

The placenta is a dynamic and complex organ that plays an essential role in the health and development of the fetus. Placental disorders can affect the health of both the mother and the fetus. There is currently an unmet clinical need to develop nanoparticle-based therapies to target and treat placental disorders. However, little is known about the interaction of nanoparticles (NPs) with the human placenta under biomimetic conditions. Specifically, the impact of shear stress exerted on the trophoblasts (placental epithelial cells) by the maternal blood flow, the gradual fusion of the trophoblasts along the gestation period (syncytialization), and the impact of microvilli formation on the cell uptake of NPs is not known. To this end, we designed dynamic placenta-on-a-chip models using BeWo cells to recapitulate the micro-physiological environment, and we induced different degrees of syncytialization via chemical induction with forskolin. We characterized the degree of syncytialization quantitatively by measuring beta human chorionic gonadotropin (ß-hCG) secretion, as well as qualitatively by immunostaining the tight junction protein, ZO-1, and counter nuclear staining. We also characterized microvilli formation under static and dynamic conditions via F-actin staining. We used these models to measure the cell uptake of chondroitin sulfate a binding protein (CSA) conjugated and control liposomes using confocal microscopy, followed by image analysis. Interestingly, exposure of the cells to a dynamic flow of media intrinsically induced syncytialization and microvilli formation compared to static controls. Under dynamic conditions, BeWo cells produced more ß-hCG in conditions that increased the cell exposure time to forskolin (p < 0.005). Our cell uptake results clearly show a combined effect of the exerted shear stress and forskolin treatment on the cell uptake of liposomes as uptake increased in forskolin exposed conditions (p < 0.05). Overall, the difference in the extent of cell uptake of liposomes among the different conditions clearly displays a need for the development of dynamic models of the placenta that consider the changes in the placental cell phenotype along the gestation period, including syncytialization, microvilli formation, and the expression of different transport and uptake receptors. Knowledge generated from this work will inform future research aiming at developing drug delivery systems targeting the placenta.


Asunto(s)
Nanopartículas , Trofoblastos , Femenino , Embarazo , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Colforsina/farmacología , Colforsina/metabolismo , Liposomas/metabolismo , Dispositivos Laboratorio en un Chip , Proteínas Portadoras/metabolismo
3.
Small ; 17(44): e2103192, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558181

RESUMEN

An effective treatment of human diseases using regenerative medicine and cell therapy approaches requires a large number of cells. Cultivation of cells on microcarriers is a promising approach due to the high surface-to-volume ratios that these microcarriers offer. Here, multifunctional temperature-responsive microcarriers (cytoGel) made of an interpenetrating hydrogel network composed of poly(N-isopropylacrylamide) (PNIPAM), poly(ethylene glycol) diacrylate (PEGDA), and gelatin methacryloyl (GelMA) are developed. A flow-focusing microfluidic chip is used to produce microcarriers with diameters in the range of 100-300 µm and uniform size distribution (polydispersity index of ≈0.08). The mechanical properties and cells adhesion properties of cytoGel are adjusted by changing the composition hydrogel composition. Notably, GelMA regulates the temperature response and enhances microcarrier stiffness. Human-derived glioma cells (U87) are grown on cytoGel in static and dynamic culture conditions with cell viabilities greater than 90%. Enzyme-free cell detachment is achieved at room temperature with up to 70% detachment efficiency. Controlled release of bioactive molecules from cytoGel is accomplished for over a week to showcase the potential use of microcarriers for localized delivery of growth factors to cell surfaces. These microcarriers hold great promise for the efficient expansion of cells for the industrial-scale culture of therapeutic cells.


Asunto(s)
Técnicas de Cultivo de Célula , Gelatina , Adhesión Celular , Proliferación Celular , Humanos , Metacrilatos
4.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 749-768, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29481833

RESUMEN

Lung cancer is considered one of the most frequent causes of cancer-related death worldwide and Non-Small Cell Lung Cancer (NSCLC) accounts for 80% of all lung cancer cases. Autophagy is a cellular process responsible for the recycling of damaged organelles and protein aggregates. Transforming growth factor beta-1 (TGFß1) is involved in Epithelial to Mesenchymal Transition (EMT) and autophagy induction in different cancer models and plays an important role in the pathogenesis of NSCLC. It is not clear how autophagy can regulate EMT in NSCLC cells. In the present study, we have investigated the regulatory role of autophagy in EMT induction in NSCLC and show that TGFß1 can simultaneously induce both autophagy and EMT in the NSCL lines A549 and H1975. Upon chemical inhibition of autophagy using Bafilomycin-A1, the expression of the mesenchymal marker vimentin and N-cadherin was reduced. Immunoblotting and immunocytochemistry (ICC) showed that the mesenchymal marker vimentin was significantly downregulated upon TGFß1 treatment in ATG7 knockdown cells when compared to corresponding cells treated with scramble shRNA (negative control), while E-cadherin was unchanged. Furthermore, autophagy inhibition (Bafilomycin A1 and ATG7 knockdown) decreased two important mesenchymal functions, migration and contraction, of NSCLC cells upon TGFß1 treatment. This study identified a crucial role of autophagy as a potential positive regulator of TGFß1-induced EMT in NSCLC cells and identifies inhibitors of autophagy as promising new drugs in antagonizing the role of EMT inducers, like TGFß1, in the clinical progression of NSCLC.


Asunto(s)
Autofagia/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta1/genética , Células A549 , Autofagia/efectos de los fármacos , Cadherinas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Macrólidos/administración & dosificación , Vimentina/genética
5.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L493-L504, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074489

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease in adults with limited treatment options. Autophagy and the unfolded protein response (UPR), fundamental processes induced by cell stress, are dysregulated in lung fibroblasts and epithelial cells from humans with IPF. Human primary cultured lung parenchymal and airway fibroblasts from non-IPF and IPF donors were stimulated with transforming growth factor-ß1 (TGF-ß1) with or without inhibitors of autophagy or UPR (IRE1 inhibitor). Using immunoblotting, we monitored temporal changes in abundance of protein markers of autophagy (LC3ßII and Atg5-12), UPR (BIP, IRE1α, and cleaved XBP1), and fibrosis (collagen 1α2 and fibronectin). Using fluorescent immunohistochemistry, we profiled autophagy (LC3ßII) and UPR (BIP and XBP1) markers in human non-IPF and IPF lung tissue. TGF-ß1-induced collagen 1α2 and fibronectin protein production was significantly higher in IPF lung fibroblasts compared with lung and airway fibroblasts from non-IPF donors. TGF-ß1 induced the accumulation of LC3ßII in parallel with collagen 1α2 and fibronectin, but autophagy marker content was significantly lower in lung fibroblasts from IPF subjects. TGF-ß1-induced collagen and fibronectin biosynthesis was significantly reduced by inhibiting autophagy flux in fibroblasts from the lungs of non-IPF and IPF donors. Conversely, only in lung fibroblasts from IPF donors did TGF-ß1 induce UPR markers. Treatment with an IRE1 inhibitor decreased TGF-ß1-induced collagen 1α2 and fibronectin biosynthesis in IPF lung fibroblasts but not those from non-IPF donors. The IRE1 arm of the UPR response is uniquely induced by TGF-ß1 in lung fibroblasts from human IPF donors and is required for excessive biosynthesis of collagen and fibronectin in these cells.


Asunto(s)
Autofagia , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Factor de Crecimiento Transformador beta1/administración & dosificación , Respuesta de Proteína Desplegada , Estudios de Casos y Controles , Colágeno Tipo I/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/citología , Pulmón/metabolismo , Transducción de Señal
6.
Drug Resist Updat ; 25: 13-25, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-27155373

RESUMEN

Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/metabolismo , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Progresión de la Enfermedad , Humanos , Hidroximetilglutaril-CoA Reductasas/efectos de los fármacos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Proto-Oncogenes Mas
7.
Iran J Med Sci ; 42(1): 32-39, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28293048

RESUMEN

BACKGROUND: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5' noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of BDNF transcripts in the hippocampus of rats. The aim of this study was to evaluate the effects of the phytoestrogen, RSV, on the splicing pattern of BDNF transcripts and on the pro-BDNF protein in the hippocampi of mother rats and their embryos. METHODS: RSV (60 or 120 mg/kg BW/day) was administered orally to pregnant rats from days 1 to 20 of gestation. Hippocampi of adults and embryos were dissected 24 h after the last administration of RSV. Extracts from hippocampi were subject to quantitative (q) RT-PCR and Western blotting to assess splicing pattern of the BDNF transcripts and levels of pro-BDNF protein, respectively. RESULTS: RSV (120 mg/kg BW/day) caused a statistically significant increase in the expression levels of BDNF exons III, IV and IX, but not the exon I in the hippocampi of adult rats (P≤0.05). Levels of pro-BDNF protein remained unchanged in the hippocampal tissues from both adult and embryonic rats treated by RSV (60 or 120 mg/kg BW/day). CONCLUSION: Our results showed that RSV differentially activates promoters of the BDNF gene in the hippocampus of pregnant rats, but fails to affect the pro-BDNF level neither in adult nor in the embryonic hippocampal tissues.

8.
Int J Mol Sci ; 16(12): 30422-37, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26703578

RESUMEN

We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Etanol/farmacología , Hipocampo/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Exones , Femenino , Hipocampo/embriología , Hipocampo/metabolismo , Embarazo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Resveratrol , Estilbenos/farmacología
9.
Biochim Biophys Acta Mol Basis Dis ; : 167332, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960056

RESUMEN

Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.

10.
FEBS Open Bio ; 14(7): 1116-1132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769074

RESUMEN

Alzheimer's disease (AD) is an increasingly important public health concern due to the increasing proportion of older individuals within the general population. The impairment of processes responsible for adequate brain energy supply primarily determines the early features of the aging process. Restricting brain energy supply results in brain hypometabolism prior to clinical symptoms and is anatomically and functionally associated with cognitive impairment. The present study investigated changes in metabolic profiles induced by intracerebroventricular-streptozotocin (ICV-STZ) in an AD-like animal model. To this end, male Wistar rats received a single injection of STZ (3 mg·kg-1) by ICV (2.5 µL into each ventricle for 5 min on each side). In the second week after receiving ICV-STZ, rats were tested for cognitive performance using the Morris Water Maze test and subsequently prepared for positron emission tomography (PET) to confirm AD-like symptoms. Tandem Mass Spectrometry (MS/MS) analysis was used to detect amino acid changes in cerebrospinal fluid (CFS) samples. Our metabolomics study revealed a reduction in the concentrations of various amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, isoleucine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, and valine) in CSF of ICV-STZ-treated animals as compared to controls rats. The results of the current study indicate amino acid levels could potentially be considered targets of nutritional and/or pharmacological interventions to interfere with AD progression.


Asunto(s)
Enfermedad de Alzheimer , Aminoácidos , Modelos Animales de Enfermedad , Metabolómica , Ratas Wistar , Estreptozocina , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/líquido cefalorraquídeo , Masculino , Ratas , Metabolómica/métodos , Aminoácidos/metabolismo , Aminoácidos/líquido cefalorraquídeo , Biología de Sistemas , Tomografía de Emisión de Positrones , Inyecciones Intraventriculares
12.
Pharmaceutics ; 15(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37765253

RESUMEN

Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.

13.
Eur J Cell Biol ; 102(3): 151337, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392580

RESUMEN

Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.


Asunto(s)
Ceramidas , Neoplasias , Humanos , Ceramidas/farmacología , Apoptosis , Autofagia
14.
Mult Scler Relat Disord ; 56: 103221, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34461573

RESUMEN

Multiple Sclerosis (MS) is known as a chronic demyelinating disease with multifactorial etiology. It is suggested that the deimination of myelin basic proteins (MBPs) by peptidyl arginine deiminase 2 (PAD2) may increase citrulline residues resulting in the reduction of myelin sheath density and the progression of multiple sclerosis. The aim of this study was to investigate the effects of vitamin D (25-hydroxy cholecalciferol (D3)) and estradiol on PAD2 gene expression level and its catalytic activity in rat C6 glioma cells. C6 glioma cells were cultured in DMEM medium and were treated with vitamin D (10 and 100 ng/ml) and estradiol (10 and 100 µM) based on the cellular viability. Then, the PAD2 gene expression and catalytic activity were evaluated using real-time qRT-PCR and spectrophotometry techniques, respectively. The PAD2 gene expression level and its catalytic activity increased significantly in estradiol-treated cells (P = 0.0435 and P = 0.0015, respectively). Conversely, vitamin D downregulated significantly the PAD2 gene expression level (P < 0.015) and its activity (P < 0.017). The study results suggested that estradiol conversely with vitamin D increases the activity of the PAD2 enzyme so that it might develop multiple sclerosis, especially in women.


Asunto(s)
Estradiol , Glioma , Animales , Colecalciferol/farmacología , Citrulina , Estradiol/farmacología , Glioma/genética , Hidrolasas , Ratas
15.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166131, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766738

RESUMEN

Pregnant women often have to take medication either for pregnancy-related diseases or for previously existing medical conditions. Current maternal medications pose fetal risks due to off target accumulation in the fetus. Nanoparticles, engineered particles in the nanometer scale, have been used for targeted drug delivery to the site of action without off-target effects. This has opened new avenues for treatment of pregnancy-associated diseases while minimizing risks on the fetus. It is therefore instrumental to study the potential transfer of nanoparticles from the mother to the fetus. Due to limitations of in vivo and ex vivo models, an in vitro model mimicking the in vivo situation is essential. Placenta-on-a-chip provides a microphysiological recapitulation of the human placenta. Here, we reviewed the fetal risks associated with current therapeutic approaches during pregnancy, analyzed the advantages and limitations of current models used for nanoparticle assessment, and highlighted the current need for using dynamic placenta-on-a-chip models for assessing the safety of novel nanoparticle-based therapies during pregnancy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Feto/metabolismo , Dispositivos Laboratorio en un Chip/estadística & datos numéricos , Nanopartículas/administración & dosificación , Placenta/metabolismo , Complicaciones del Embarazo/tratamiento farmacológico , Medición de Riesgo/métodos , Femenino , Feto/efectos de los fármacos , Humanos , Intercambio Materno-Fetal , Nanopartículas/efectos adversos , Placenta/efectos de los fármacos , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/patología
16.
Transl Med Commun ; 6(1): 3, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33521322

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has profoundly affected the lives of millions of people. To date, there is no approved vaccine or specific drug to prevent or treat COVID-19, while the infection is globally spreading at an alarming rate. Because the development of effective vaccines or novel drugs could take several months (if not years), repurposing existing drugs is considered a more efficient strategy that could save lives now. Statins constitute a class of lipid-lowering drugs with proven safety profiles and various known beneficial pleiotropic effects. Our previous investigations showed that statins have antiviral effects and are involved in the process of wound healing in the lung. This triggered us to evaluate if statin use reduces mortality in COVID-19 patients. RESULTS: After initial recruitment of 459 patients with COVID-19 (Shiraz province, Iran) and careful consideration of the exclusion criteria, a total of 150 patients, of which 75 received statins, were included in our retrospective study. Cox proportional-hazards regression models were used to estimate the association between statin use and rate of death. After propensity score matching, we found that statin use appeared to be associated with a lower risk of morbidity [HR = 0.85, 95% CI = (0.02, 3.93), P = 0.762] and lower risk of death [(HR = 0.76; 95% CI = (0.16, 3.72), P = 0.735)]; however, these associations did not reach statistical significance. Furthermore, statin use reduced the chance of being subjected to mechanical ventilation [OR = 0.96, 95% CI = (0.61-2.99), P = 0.942] and patients on statins showed a more normal computed tomography (CT) scan result [OR = 0.41, 95% CI = (0.07-2.33), P = 0.312]. CONCLUSIONS: Although we could not demonstrate a significant association between statin use and a reduction in mortality in patients with COVID19, we do feel that our results are promising and of clinical relevance and warrant the need for prospective randomized controlled trials and extensive retrospective studies to further evaluate and validate the potential beneficial effects of statin treatment on clinical symptoms and mortality rates associated with COVID-19.

17.
Diabetes Metab Syndr Obes ; 13: 1509-1517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32440180

RESUMEN

PURPOSE: Depression and anxiety are common disorders in patients suffering from type 2 diabetes. These disorders can lead to premature morbidity, exacerbate disease complications, make patients suffer more, and increase health-care costs. As diabetes has increased worldwide recently, it is necessary to reduce the prevalence of factors that are associated with depression and anxiety in diabetes patients. This study aimed to assess the prevalence of anxiety and depression and to identify their associated factors, including metabolic components among people with type 2 diabetes. PATIENTS AND METHODS: We performed a cross-sectional study in 1500 patients with type 2 diabetes in Kerman, in the southern part of Iran. The prevalence of depression and anxiety was estimated using the Beck Depression Inventory and the Hamilton Anxiety questionnaires, respectively. After calculating the proportions of depression and anxiety, univariate logistic regression was performed. Factors whose P-values were smaller than 0.2 in univariate logistic regression were included in multiple logistic regression for confounder adjustments. The analysis was performed using SPSS version 20. RESULTS: The rates of depression and anxiety were 59% (95% CI: 54.48-63.12) and 62% (95% CI: 59.51-66.27), respectively. Factors found to be independently associated with anxiety were high FBS, high LDL-C, high TG, hypertension, complications, low physical activity. Factors found to be independently associated with depression were female gender, older age, high BMI, high FBS, high LDL-C, low HDL-C, high TG, high HbA1c, hypertension, and low physical activity. Complications were independently associated with anxiety but not with depression. Female gender, older age, high BMI, low HDL-C, and high HbA1c were independently associated with depression but not with anxiety. CONCLUSION: Current findings demonstrated that a large proportion of patients with type 2 diabetes suffer from depression and anxiety. This study also identified factors associated with these disorders. Controlling some metabolic variables will decrease the prevalence of these disorders and improves clinical remedy and quality of life in patients with type 2 diabetes.

18.
Virulence ; 11(1): 805-810, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32567972

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak resulted in 5,993,317 confirmed cases worldwide with 365,394 confirmed deaths (as of May 29th, 2020, WHO). The molecular mechanism of virus infection and spread in the body is not yet disclosed, but studies on other betacoronaviruses show that, upon cell infection, these viruses inhibit macroautophagy/autophagy flux and cause the accumulation of autophagosomes. No drug has yet been approved for the treatment of SARS-CoV-2 infection; however, preclinical investigations suggested repurposing of several FDA-approved drugs for clinical trials. Half of these drugs are modulators of the autophagy pathway. Unexpectedly, instead of acting by directly antagonizing the effects of viruses, these drugs appear to function by suppressing autophagy flux. Based on the established cross-talk between autophagy and apoptosis, we speculate that over-accumulation of autophagosomes activates an apoptotic pathway that results in apoptotic death of the infected cells and disrupts the virus replication cycle. However, administration of the suggested drugs are associated with severe adverse effects due to their off-target accumulation. Nanoparticle targeting of autophagy at the sites of interest could be a powerful tool to efficiently overcome SARS-CoV-2 infection while avoiding the common adverse effects of these drugs.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Neumonía Viral/patología , Neumonía Viral/virología , Autofagia , COVID-19 , Humanos , Pandemias , SARS-CoV-2
19.
Cells ; 9(11)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105603

RESUMEN

Glioblastoma (GBM) is the most prevalent malignant primary brain tumor with a very poor survival rate. Temozolomide (TMZ) is the common chemotherapeutic agent used for GBM treatment. We recently demonstrated that simvastatin (Simva) increases TMZ-induced apoptosis via the inhibition of autophagic flux in GBM cells. Considering the role of the unfolded protein response (UPR) pathway in the regulation of autophagy, we investigated the involvement of UPR in Simva-TMZ-induced cell death by utilizing highly selective IRE1 RNase activity inhibitor MKC8866, PERK inhibitor GSK-2606414 (PERKi), and eIF2α inhibitor salubrinal. Simva-TMZ treatment decreased the viability of GBM cells and significantly increased apoptotic cell death when compared to TMZ or Simva alone. Simva-TMZ induced both UPR, as determined by an increase in GRP78, XBP splicing, eukaryote initiation factor 2α (eIF2α) phosphorylation, and inhibited autophagic flux (accumulation of LC3ß-II and inhibition of p62 degradation). IRE1 RNase inhibition did not affect Simva-TMZ-induced cell death, but it significantly induced p62 degradation and increased the microtubule-associated proteins light chain 3 (LC3)ß-II/LC3ß-I ratio in U87 cells, while salubrinal did not affect the Simva-TMZ induced cytotoxicity of GBM cells. In contrast, protein kinase RNA-like endoplasmic reticulum kinase (PERK) inhibition significantly increased Simva-TMZ-induced cell death in U87 cells. Interestingly, whereas PERK inhibition induced p62 accumulation in both GBM cell lines, it differentially affected the LC3ß-II/LC3ß-I ratio in U87 (decrease) and U251 (increase) cells. Simvastatin sensitizes GBM cells to TMZ-induced cell death via a mechanism that involves autophagy and UPR pathways. More specifically, our results imply that the IRE1 and PERK signaling arms of the UPR regulate Simva-TMZ-mediated autophagy flux inhibition in U251 and U87 GBM cells.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , Temozolomida/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Sinergismo Farmacológico , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Glioblastoma , Humanos , Fosforilación , Transducción de Señal/efectos de los fármacos , Temozolomida/uso terapéutico
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165968, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32927022

RESUMEN

The statin drugs ('statins') potently inhibit hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase by competitively blocking the active site of the enzyme. Statins decrease de novo cholesterol biosynthesis and thereby reduce plasma cholesterol levels. Statins exhibit "pleiotropic" properties that are independent of their lipid-lowering effects. For example, preclinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. Furthermore, statins show chemo-sensitizing effects by impairing Ras family GTPase signaling. However, whether statins have clinically meaningful anti-cancer effects remains an area of active investigation. Both preclinical and clinical studies on the potential mechanisms of action of statins in several cancers have been reviewed in the literature. Considering the contradictory data on their efficacy, we present an up-to-date summary of the pleiotropic effects of statins in cancer therapy and review their impact on different malignancies. We also discuss the synergistic anti-cancer effects of statins when combined with other more conventional anti-cancer drugs to highlight areas of potential therapeutic development.


Asunto(s)
Antineoplásicos/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias/tratamiento farmacológico , Proteínas ras/antagonistas & inhibidores , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Estructura Molecular , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA