RESUMEN
Previous herpes simplex virus type 2 (HSV-2) vaccines have not prevented genital herpes. Concerns have been raised about the choice of antigen, the type of antibody induced by the vaccine, and whether antibody is present in the genital tract where infection occurs. We reported results of a trial of an HSV-2 replication-defective vaccine, HSV529, that induced serum neutralizing antibody responses in 78% of HSV-1-/HSV-2- vaccine recipients. Here we show that HSV-1-/HSV-2- vaccine recipients developed antibodies to epitopes of several viral proteins; however, fewer antibody epitopes were detected in vaccine recipients compared with naturally infected persons. HSV529 induced antibodies that mediated HSV-2-specific natural killer (NK) cell activation. Depletion of glycoprotein D (gD)-binding antibody from sera reduced neutralizing titers by 62% and NK cell activation by 81%. HSV-2 gD antibody was detected in cervicovaginal fluid at about one-third the level of that in serum. A vaccine that induces potent serum antibodies transported to the genital tract might reduce HSV genital infection.
Asunto(s)
Anticuerpos Antivirales/sangre , Herpes Genital/prevención & control , Vacunas contra el Virus del Herpes Simple/administración & dosificación , Herpes Simple/prevención & control , Herpesvirus Humano 2/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación , Epítopos , Vacunas contra el Virus del Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Humanos , InmunizaciónRESUMEN
T follicular helper (TFH) cells are the conventional drivers of protective, germinal center (GC)based antiviral antibody responses. However, loss of TFH cells and GCs has been observed in patients with severe COVID-19. As T cellB cell interactions and immunoglobulin class switching still occur in these patients, noncanonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both TFH-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Although TFH-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. We found by epitope mapping and B cell receptor sequencing that TFH cells focused the B cell response, and therefore, in the absence of TFH cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Células T Auxiliares Foliculares/inmunología , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , Centro Germinal/inmunología , Humanos , Activación de Linfocitos/inmunología , Ratones , Linfocitos T Colaboradores-InductoresRESUMEN
Identification of the antigens associated with antibodies is vital to understanding immune responses in the context of infection, autoimmunity, and cancer. Discovering antigens at a proteome scale could enable broader identification of antigens that are responsible for generating an immune response or driving a disease state. Although targeted tests for known antigens can be straightforward, discovering antigens at a proteome scale using protein and peptide arrays is time consuming and expensive. We leverage Serum Epitope Repertoire Analysis (SERA), an assay based on a random bacterial display peptide library coupled with next generation sequencing (NGS), to power the development of Protein-based Immunome Wide Association Study (PIWAS). PIWAS uses proteome-based signals to discover candidate antibody-antigen epitopes that are significantly elevated in a subset of cases compared to controls. After demonstrating statistical power relative to the magnitude and prevalence of effect in synthetic data, we apply PIWAS to systemic lupus erythematosus (SLE, n=31) and observe known autoantigens, Smith and Ribosomal protein P, within the 22 highest scoring candidate protein antigens across the entire human proteome. We validate the magnitude and location of the SLE specific signal against the Smith family of proteins using a cohort of patients who are positive by predicate anti-Sm tests. To test the generalizability of the method in an additional autoimmune disease, we identified and validated autoantigenic signals to SSB, CENPA, and keratin proteins in a cohort of individuals with Sjogren's syndrome (n=91). Collectively, these results suggest that PIWAS provides a powerful new tool to discover disease-associated serological antigens within any known proteome.
Asunto(s)
Autoantígenos/inmunología , Autoinmunidad , Epítopos Inmunodominantes , Lupus Eritematoso Sistémico/inmunología , Proteoma , Proteómica , Síndrome de Sjögren/inmunología , Autoanticuerpos/sangre , Autoantígenos/genética , Autoantígenos/metabolismo , Estudios de Casos y Controles , Simulación por Computador , Bases de Datos de Proteínas , Ensayo de Inmunoadsorción Enzimática , Humanos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/genética , Biblioteca de Péptidos , Reproducibilidad de los Resultados , Pruebas Serológicas , Síndrome de Sjögren/sangre , Síndrome de Sjögren/genéticaRESUMEN
Reverse vaccinology is an evolving approach for improving vaccine effectiveness and minimizing adverse responses by limiting immunizations to critical epitopes. Towards this goal, we sought to identify immunogenic amino acid motifs and linear epitopes of the SARS-CoV-2 spike protein that elicit IgG in COVID-19 mRNA vaccine recipients. Paired pre/post vaccination samples from N = 20 healthy adults, and post-vaccine samples from an additional N = 13 individuals were used to immunoprecipitate IgG targets expressed by a bacterial display random peptide library, and preferentially recognized peptides were mapped to the spike primary sequence. The data identify several distinct amino acid motifs recognized by vaccine-induced IgG, a subset of those targeted by IgG from natural infection, which may mimic 3-dimensional conformation (mimotopes). Dominant linear epitopes were identified in the C-terminal domains of the S1 and S2 subunits (aa 558-569, 627-638, and 1148-1159) which have been previously associated with SARS-CoV-2 neutralization in vitro and demonstrate identity to bat coronavirus and SARS-CoV, but limited homology to non-pathogenic human coronavirus. The identified COVID-19 mRNA vaccine epitopes should be considered in the context of variants, immune escape and vaccine and therapy design moving forward.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Mapeo Epitopo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Infecciones por Coronavirus/inmunología , Humanos , Inmunoglobulina G/sangre , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
As Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.
Asunto(s)
Mapeo Epitopo , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19 , Reacciones Cruzadas , HumanosRESUMEN
PURPOSE: Autoantibody responses in cancer are of great interest, as they may be concordant with T-cell responses to cancer antigens or predictive of response to cancer immunotherapies. Thus, we sought to characterize the antibody landscape of metastatic castration-resistant prostate cancer (mCRPC). EXPERIMENTAL DESIGN: Serum antibody epitope repertoire analysis (SERA) was performed on patient serum to identify tumor-specific neoepitopes. Somatic mutation-specific neoepitopes were investigated by associating serum epitope enrichment scores with whole-genome sequencing results from paired solid tumor metastasis biopsies and germline blood samples. A protein-based immunome-wide association study (PIWAS) was performed to identify significantly enriched epitopes, and candidate serum antibodies enriched in select patients were validated by ELISA profiling. A distinct cohort of patients with melanoma was evaluated to validate the top cancer-specific epitopes. RESULTS: SERA was performed on 1,229 serum samples obtained from 72 men with mCRPC and 1,157 healthy control patients. Twenty-nine of 6,636 somatic mutations (0.44%) were associated with an antibody response specific to the mutated peptide. PIWAS analyses identified motifs in 11 proteins, including NY-ESO-1 and HERVK-113, as immunogenic in mCRPC, and ELISA confirmed serum antibody enrichment in candidate patients. Confirmatory PIWAS, Identifying Motifs Using Next-generation sequencing Experiments (IMUNE), and ELISA analyses performed on serum samples from 106 patients with melanoma similarly revealed enriched cancer-specific antibody responses to NY-ESO-1. CONCLUSIONS: We present the first large-scale profiling of autoantibodies in advanced prostate cancer, utilizing a new antibody profiling approach to reveal novel cancer-specific antigens and epitopes. Our study recovers antigens of known importance and identifies novel tumor-specific epitopes of translational interest.