Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chemistry ; 24(8): 1922-1930, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29171692

RESUMEN

Dihydropteroate synthase (DHPS) is an enzyme of the folate biosynthesis pathway, which catalyzes the formation of 7,8-dihydropteroate (DHPt) from 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) and para-aminobenzoic acid (pABA). DHPS is the long-standing target of the sulfonamide class of antibiotics that compete with pABA. In the wake of sulfa drug resistance, targeting the structurally rigid (and more conserved) pterin site has been proposed as an alternate strategy to inhibit DHPS in wild-type and sulfa drug resistant strains. Following the work on developing pterin-site inhibitors of the adjacent enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), we now present derivatives of 8-mercaptoguanine, a fragment that binds weakly within both enzymes, and quantify sub-µm binding using surface plasmon resonance (SPR) to Escherichia coli DHPS (EcDHPS). Eleven ligand-bound EcDHPS crystal structures delineate the structure-activity relationship observed providing a structural framework for the rational development of novel, substrate-envelope-compliant DHPS inhibitors.


Asunto(s)
Dihidropteroato Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Guanina/análogos & derivados , Antibacterianos/química , Antibacterianos/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dihidropteroato Sintasa/metabolismo , Inhibidores Enzimáticos/metabolismo , Escherichia coli/enzimología , Guanina/metabolismo , Enlace de Hidrógeno , Ligandos , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Sulfonamidas/química , Resonancia por Plasmón de Superficie
2.
Nat Chem Biol ; 10(9): 745-52, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108820

RESUMEN

SB269652 is to our knowledge the first drug-like allosteric modulator of the dopamine D2 receptor (D2R), but it contains structural features associated with orthosteric D2R antagonists. Using a functional complementation system to control the identity of individual protomers within a dimeric D2R complex, we converted the pharmacology of the interaction between SB269652 and dopamine from allosteric to competitive by impairing ligand binding to one of the protomers, indicating that the allostery requires D2R dimers. Additional experiments identified a 'bitopic' pose for SB269652 extending from the orthosteric site into a secondary pocket at the extracellular end of the transmembrane (TM) domain, involving TM2 and TM7. Engagement of this secondary pocket was a requirement for the allosteric pharmacology of SB269652. This suggests a new mechanism whereby a bitopic ligand binds in an extended pose on one G protein-coupled receptor protomer to allosterically modulate the binding of a ligand to the orthosteric site of a second protomer.


Asunto(s)
Dopaminérgicos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Conformación Proteica , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Receptores de Dopamina D2/efectos de los fármacos , Receptores Acoplados a Proteínas G/química , Transducción de Señal
3.
Bioorg Med Chem ; 23(14): 3880-906, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25638496

RESUMEN

Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy.


Asunto(s)
Diseño de Fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Química Farmacéutica/métodos , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Proteica , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo
4.
Med Res Rev ; 34(6): 1286-330, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24796277

RESUMEN

Historically, determination of G protein-coupled receptor (GPCR) ligand efficacy has often been restricted to identifying the ligand as an agonist or antagonist at a given signaling pathway. This classification was deemed sufficient to predict compound efficacy at all signaling endpoints, including the therapeutically relevant one(s). However, it is now apparent that ligands acting at the same GPCR can stabilize multiple, distinct, receptor conformations linked to different functional outcomes. This phenomenon, known as biased agonism, stimulus bias, or functional selectivity offers the opportunity to separate on-target therapeutic effects from side effects through the design of drugs that show pathway selectivity. However, the medicinal chemist faces numerous challenges to develop biased ligands, including the detection and quantification of biased agonism. This review summarizes the current state of the field of research into biased agonism at GPCRs, with a particular focus on efforts to relate biased agonism to ligand structure.


Asunto(s)
Química Farmacéutica/métodos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Sesgo , Humanos , Ligandos , Unión Proteica , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 23(11): 3427-33, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23602401

RESUMEN

Growing evidence has suggested a role in targeting the adenosine A2A receptor for the treatment of Parkinson's disease. The literature compounds KW 6002 (2) and ZM 241385 (5) were used as a starting point from which a series of novel ligands targeting the adenosine A2A receptor were synthesized and tested in a recombinant human adenosine A2A receptor functional assay. In order to further explore these molecules, we investigated the biological effects of assorted linkers attached to different positions on selected adenosine A2A receptor antagonists, and assessed their potential binding modes using molecular docking studies. The results suggest that linking from the phenolic oxygen of selected adenosine A2A receptor antagonists is relatively well tolerated due to the extension towards extracellular space, and leads to the potential of attaching further functionality from this position.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/síntesis química , Receptor de Adenosina A2A/química , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/metabolismo , Sitios de Unión , Humanos , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Receptor de Adenosina A2A/metabolismo , Triazinas/química , Triazoles/química
6.
Nat Commun ; 14(1): 2138, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059717

RESUMEN

G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the ß1 and ß2 adrenergic receptors (ß1AR and ß2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the ß2AR over the ß1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the ß2AR, as well as a less stable binding pocket for constrained epinephrine in the ß1AR. The differences in the amino acid sequence of the extracellular vestibule of the ß1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the ß2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.


Asunto(s)
Catecolaminas , Receptores Adrenérgicos beta 2 , Ligandos , Receptores Adrenérgicos beta 2/metabolismo , Epinefrina/farmacología , Secuencia de Aminoácidos
7.
ACS Chem Biol ; 14(8): 1780-1792, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31339684

RESUMEN

Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed mutagenesis, analytical pharmacology, ligand fragments, and molecular dynamics simulations to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal that an interaction between the secondary pharmacophore of aripiprazole and a secondary binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 2, and 7 determines the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto unappreciated mechanism for fine-tuning the intrinsic efficacy of D2R agonists.


Asunto(s)
Antipsicóticos/metabolismo , Aripiprazol/metabolismo , Agonistas de Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Aripiprazol/química , Sitios de Unión , Dopamina/química , Dopamina/metabolismo , Agonistas de Dopamina/química , Indoles/química , Indoles/metabolismo , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética
8.
Sci Rep ; 8(1): 1208, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352161

RESUMEN

Sodium ions (Na+) allosterically modulate the binding of orthosteric agonists and antagonists to many class A G protein-coupled receptors, including the dopamine D2 receptor (D2R). Experimental and computational evidences have revealed that this effect is mediated by the binding of Na+ to a conserved site located beneath the orthosteric binding site (OBS). SB269652 acts as a negative allosteric modulator (NAM) of the D2R that adopts an extended bitopic pose, in which the tetrahydroisoquinoline moiety interacts with the OBS and the indole-2-carboxamide moiety occupies a secondary binding pocket (SBP). In this study, we find that the presence of a Na+ within the conserved Na+-binding pocket is required for the action of SB269652. Using fragments of SB269652 and novel full-length analogues, we show that Na+ is required for the high affinity binding of the tetrahydroisoquinoline moiety within the OBS, and that the interaction of the indole-2-carboxamide moiety with the SBP determines the degree of Na+-sensitivity. Thus, we extend our understanding of the mode of action of this novel class of NAM by showing it acts synergistically with Na+ to modulate the binding of orthosteric ligands at the D2R, providing opportunities for fine-tuning of modulatory effects in future allosteric drug design efforts.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2/farmacología , Iones/metabolismo , Receptores de Dopamina D2/metabolismo , Sodio/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Células CHO , Cricetulus , Dopamina/química , Dopamina/metabolismo , Antagonistas de los Receptores de Dopamina D2/química , Humanos , Indoles/química , Indoles/farmacología , Iones/química , Isoquinolinas/química , Isoquinolinas/farmacología , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Receptores de Dopamina D2/química , Sodio/química
9.
Biochem Pharmacol ; 148: 315-328, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29325769

RESUMEN

SB269652 is a negative allosteric modulator of the dopamine D2 receptor (D2R) yet possesses structural similarity to ligands with a competitive mode of interaction. In this study, we aimed to understand the ligand-receptor interactions that confer its allosteric action. We combined site-directed mutagenesis with molecular dynamics simulations using both SB269652 and derivatives from our previous structure activity studies. We identify residues within the conserved orthosteric binding site (OBS) and a secondary binding pocket (SBP) that determine affinity and cooperativity. Our results indicate that interaction with the SBP is a requirement for allosteric pharmacology, but that both competitive and allosteric derivatives of SB269652 can display sensitivity to the mutation of a glutamate residue (E952.65) within the SBP. Our findings provide the molecular basis for the differences in affinity between SB269652 derivatives, and reveal how changes to interactions made by the primary pharmacophore of SB269652 in the orthosteric pocket can confer changes in the interactions made by the secondary pharmacophore in the SBP. Our insights provide a structure-activity framework towards rational optimization of bitopic ligands for D2R with tailored competitive versus allosteric properties.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2/farmacología , Indoles/farmacología , Isoquinolinas/farmacología , Receptores de Dopamina D2/metabolismo , Animales , Sitios de Unión , Células CHO , Cricetulus , Antagonistas de los Receptores de Dopamina D2/química , Indoles/química , Isoquinolinas/química , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica
11.
J Med Chem ; 60(11): 4693-4713, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28489379

RESUMEN

By means of a formal structural hybridization of the antipsychotic drug aripiprazole and the heterocyclic catecholamine surrogates present in the ß2-adrenoceptor agonists procaterol and BI-167107 (4), we designed and synthesized a collection of novel hydroxy-substituted heteroarylpiperazines and heteroarylhomopiperazines with high dopamine D2 receptor (D2R) affinity. In contrast to the weak agonistic behavior of aripiprazole, these ligands are capable of effectively mimicking those interactions of dopamine and the D2R that are crucial for an active state, leading to the recruitment of ß-arrestin-2. Interestingly, some ligands show considerably lower intrinsic activity in guanine nucleotide exchange experiments at D2R and consequently represent biased agonists favoring ß-arrestin-2 recruitment over canonical G protein activation. The ligands' agonistic properties are substantially driven by the presence of an endocyclic H-bond donor.


Asunto(s)
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacología , Piperazinas/química , Piperazinas/farmacología , Receptores de Dopamina D2/efectos de los fármacos , beta-Arrestinas/química , Animales , Células CHO , Cricetulus , Agonistas de Dopamina/metabolismo , Humanos , Receptores de Dopamina D2/metabolismo , beta-Arrestinas/metabolismo
12.
Nat Commun ; 7: 10842, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26905976

RESUMEN

Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational (that is, assay dependent) and system (that is, cell background dependent) bias are excluded by experimental design and analysis. Here we reveal that 'kinetic context', as determined by ligand-binding kinetics and the temporal pattern of receptor-signalling processes, can have a profound influence on the apparent bias of a series of agonists for the dopamine D2 receptor and can even lead to reversals in the direction of bias. We propose that kinetic context must be acknowledged in the design and interpretation of studies of biased agonism.


Asunto(s)
Agonistas de Dopamina/farmacocinética , Receptores de Dopamina D2/agonistas , Animales , Aripiprazol/farmacocinética , Células CHO , Cricetulus , Dopamina/farmacocinética , Indoles/farmacocinética , Cinética , Ligandos , Piperazinas/farmacocinética , Piperidinas/farmacocinética , Análisis de Componente Principal , Estabilidad Proteica , Receptores de Dopamina D2/metabolismo
13.
J Med Chem ; 58(17): 6819-43, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26258690

RESUMEN

Recently, we have demonstrated that N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652) (1) adopts a bitopic pose at one protomer of a dopamine D2 receptor (D2R) dimer to negatively modulate the binding of dopamine at the other protomer. The 1H-indole-2-carboxamide moiety of 1 extends into a secondary pocket between the extracellular ends of TM2 and TM7 within the D2R protomer. To target this putative allosteric site, we generated and characterized fragments that include and extend from the 1H-indole-2-carboxamide moiety of 1. N-Isopropyl-1H-indole-2-carboxamide (3) displayed allosteric pharmacology and sensitivity to mutations of the same residues at the top of TM2 as was observed for 1. Using 3 as an "allosteric lead", we designed and synthesized an extensive fragment library to generate novel SAR and identify N-butyl-1H-indole-2-carboxamide (11d), which displayed both increased negative cooperativity and affinity for the D2R. These data illustrate that fragmentation of extended compounds can expose fragments with purely allosteric pharmacology.


Asunto(s)
Amidas/química , Dopaminérgicos/química , Indoles/química , Receptores de Dopamina D2/metabolismo , Regulación Alostérica , Amidas/síntesis química , Amidas/farmacología , Animales , Arrestinas/metabolismo , Células CHO , Cuerpo Estriado/metabolismo , Cricetulus , Dopaminérgicos/síntesis química , Dopaminérgicos/farmacología , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Indoles/síntesis química , Indoles/farmacología , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Fosforilación , Ensayo de Unión Radioligante , Ratas , Receptores de Dopamina D2/genética , Estereoisomerismo , Relación Estructura-Actividad , beta-Arrestinas
14.
J Med Chem ; 58(13): 5287-307, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26052807

RESUMEN

We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural determinants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric "head" groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of 1, and replacement of the tetrahydroisoquinoline head group with other D2R "privileged structures" generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharmacology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D2R.


Asunto(s)
Indoles/química , Isoquinolinas/farmacología , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Regulación Alostérica , Animales , Células CHO , Cricetulus , Humanos , Enlace de Hidrógeno , Indoles/farmacología , Isoquinolinas/química , Ligandos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Racloprida/metabolismo , Ensayo de Unión Radioligante , Relación Estructura-Actividad
15.
J Med Chem ; 56(22): 9199-221, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24138311

RESUMEN

Biased agonism offers an opportunity for the medicinal chemist to discover pathway-selective ligands for GPCRs. A number of studies have suggested that biased agonism at the dopamine D2 receptor (D2R) may be advantageous for the treatment of neuropsychiatric disorders, including schizophrenia. As such, it is of great importance to gain insight into the SAR of biased agonism at this receptor. We have generated SAR based on a novel D2R partial agonist, tert-butyl (trans-4-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)carbamate (4). This ligand shares structural similarity to cariprazine (2), a drug awaiting FDA approval for the treatment of schizophrenia, yet displays a distinct bias toward two different signaling end points. We synthesized a number of derivatives of 4 with subtle structural modifications, including incorporation of cariprazine fragments. By combining pharmacological profiling with analytical methodology to identify and to quantify bias, we have demonstrated that efficacy and biased agonism can be finely tuned by minor structural modifications to the head group containing the tertiary amine, a tail group that extends away from this moiety, and the orientation and length of a spacer region between these two moieties.


Asunto(s)
Receptores de Dopamina D2/agonistas , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Simulación del Acoplamiento Molecular , Conformación Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
16.
ChemMedChem ; 6(6): 963-74, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21520422

RESUMEN

Specifically designed bivalent ligands targeting G protein-coupled receptor (GPCR) dimeric structures have become increasingly popular in recent literature. The advantages of the bivalent approach are numerous, including enhanced potency and receptor subtype specificity. However, the use of bivalent ligands as potential pharmacotherapeutics is limited by problematic molecular properties, such as high molecular weight and lipophilicity. This minireview focuses on the design of bivalent ligands recently described in the literature; discussing the choice of lead pharmacophore, the position and nature of the attachment point for linking the two pharmacophore units, and the length and composition of the spacer group. Furthermore, this minireview distils the molecular descriptors of the bivalent ligands that exhibit in vivo activity, as well as highlights their ability to access the central nervous system.


Asunto(s)
Diseño de Fármacos , Receptores Acoplados a Proteínas G/química , Animales , Sitios de Unión , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA