Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Drug Deliv ; 19(3): 395-406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353259

RESUMEN

BACKGROUND: Cefpodoxime Proxetil (CPD) is a broad-spectrum cephalosporin indicated in respiratory and urinary tract infections. CPD is a BCS class IV drug with pH-dependent solubility and has poor bioavailability. This study investigated the challenges of developing ternary components based on solid SNEDDS of CPD for in vitro dissolution rate enhancement and self-solidifying behaviour. METHODS: Tween 80, Transcutol and PEG6000 were employed as surfactants, solvents and solidifiers for a base of ternary components to develop self-solidifying solid SNEDDS, respectively. Ternary phase diagrams were used to characterize solidifying behaviour of ternary components in different proportions. S-SNEDDS formulations were drawn on the solidification areas available in the phase diagram and characterized for IR, XRD, DSC and in vitro drug release in various pH media. RESULTS: Ternary components for the preparation of self-solidifying solid SNEDDS were selected based on drug solubility. FTIR and DSC characterization studies ruled out any drug interaction between CPD and components chosen to prepare S-SNEDDS. CPD was transformed from a crystalline into an amorphous state in ternary dispersions as revealed from XRD data. Optimized formulation (S-S 1) demonstrated more than 95% of drug release irrespective of the pH environments of the medium. Calculation of dissolution efficiency and similarity factors indicate that S SNEDDS resulted in a higher drug dissolution rate over binary dispersion (p<0.01). The stability studies showed that the S SNEDDS were stable in performances and CPD assay. CONCLUSION: The present investigation provides an alternative approach for enhancing the CPD dissolution rate using self-solidifying solid SNEDDS exhibited solidification behaviour at ambient temperature conditions and drug loading, which could be exploited over conventional dosage form.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Administración Oral , Disponibilidad Biológica , Ceftizoxima/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Nanopartículas/química , Tamaño de la Partícula , Solubilidad , Tensoactivos/química , Cefpodoxima Proxetilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA