Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-28584157

RESUMEN

Malaria-related mortality has slowly decreased over the past decade; however, eradication of malaria requires the development of new antimalarial chemotherapies that target liver stages of the parasite and combat the emergence of drug resistance. The diminishing arsenal of anti-liver-stage compounds sparked our interest in reviving the old and previously abandoned compound menoctone. In support of these studies, we developed a new convergent synthesis method that was facile, required fewer steps, produced better yields, and utilized less expensive reagents than the previously published method. Menoctone proved to be highly potent against liver stages of Plasmodium berghei (50 percent inhibitory concentration [IC50] = 0.41 nM) and erythrocytic stages of Plasmodium falciparum (113 nM). We selected for resistance to menoctone and found M133I mutations in cytochrome b of both P. falciparum and P. berghei The same mutation has been observed previously in atovaquone resistance, and we confirmed cross-resistance between menoctone and atovaquone in vitro (for P. falciparum) and in vivo (for P. berghei). Finally, we assessed the transmission potential of menoctone-resistant P. berghei and found that the M133I mutant parasites were readily transmitted from mouse to mosquitoes and back to mice. In each step, the M133I mutation in cytochrome b, inducing menoctone resistance, was confirmed. In summary, this study is the first to show the mechanism of resistance to menoctone and that menoctone and atovaquone resistance is transmissible through mosquitoes.


Asunto(s)
Anopheles/parasitología , Antimaláricos/farmacología , Atovacuona/farmacología , Citocromos b/genética , Resistencia a Medicamentos/genética , Naftoquinonas/farmacología , Plasmodium berghei/genética , Plasmodium falciparum/genética , Animales , ADN Protozoario/genética , Femenino , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Ratones , Ratones Endogámicos BALB C , Mutación/genética , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
2.
Nat Microbiol ; 9(6): 1607-1618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740932

RESUMEN

Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous PDIM-negative mutants that have attenuated virulence and increased cell wall permeability, thus impacting the relevance of experimental findings. PDIM loss can also reduce the efficacy of the BCG Pasteur vaccine. Here we show that vancomycin susceptibility can rapidly screen for M. tuberculosis PDIM production. We find that metabolic deficiency of methylmalonyl-CoA impedes the growth of PDIM-producing bacilli, selecting for PDIM-negative variants. Supplementation with odd-chain fatty acids, cholesterol or vitamin B12 restores PDIM-positive bacterial growth. Specifically, we show that propionate supplementation enhances PDIM-producing bacterial growth and selects against PDIM-negative mutants, analogous to in vivo conditions. Our study provides a simple approach to screen for and maintain PDIM production, and reveals how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.


Asunto(s)
Mycobacterium tuberculosis , Propionatos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Propionatos/farmacología , Propionatos/metabolismo , Virulencia , Lípidos/química , Ésteres del Colesterol/metabolismo , Tuberculosis/microbiología , Tuberculosis/prevención & control , Ácidos Grasos/metabolismo , Vitamina B 12/farmacología , Vitamina B 12/metabolismo , Humanos , Mutación , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Colesterol/metabolismo , Acilcoenzima A
3.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905120

RESUMEN

Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous mutations that cause PDIM loss leading to virulence attenuation and increased cell wall permeability. We discovered that PDIM loss is due to a metabolic deficiency of methylmalonyl-CoA that impedes the growth of PDIM-producing bacilli. This can be remedied by supplementation with odd-chain fatty acids, cholesterol, or vitamin B12. We developed a much-needed facile and scalable routine assay for PDIM production and show that propionate supplementation enhances the growth of PDIM-producing bacilli and selects against PDIM-negative mutants, analogous to in vivo conditions. Our results solve a major issue in tuberculosis research and exemplify how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.

4.
Front Cell Infect Microbiol ; 12: 933458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061872

RESUMEN

Antibiotic persisters are a sub-population of bacteria able to survive in the presence of bactericidal antibiotic despite the lack of heritable drug resistance mechanisms. This phenomenon exists across many bacterial species and is observed for many different antibiotics. Though these bacteria are often described as "multidrug persisters" very few experiments have been carried out to determine the homogeneity of a persister population to different drugs. Further, there is much debate in the field as to the origins of a persister cell. Is it formed spontaneously? Does it form in response to stress? These questions are particularly pressing in the field of Mycobacterium tuberculosis, where persisters may play a crucial role in the required length of treatment and the development of multidrug resistant organisms. Here we aim to interpret the known mechanisms of antibiotic persistence and how they may relate to improving treatments for M. tuberculosis, exposing the gaps in knowledge that prevent us from answering the question: Are all antibiotic persisters created equal?


Asunto(s)
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Mycobacterium tuberculosis/genética
5.
Science ; 372(6540)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888612

RESUMEN

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Asunto(s)
Astrocitos/fisiología , Comunicación Celular , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Microglía/fisiología , Esclerosis Múltiple/fisiopatología , Análisis de la Célula Individual , Animales , Antígenos CD/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Sistema Nervioso Central/fisiopatología , Encefalomielitis Autoinmune Experimental/patología , Efrina-B3/metabolismo , Herpesvirus Suido 1/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Esclerosis Múltiple/patología , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Receptor EphB3/antagonistas & inhibidores , Receptor EphB3/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Linfocitos T/fisiología , Serina-Treonina Quinasas TOR/metabolismo
6.
Alzheimers Res Ther ; 11(1): 75, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31439023

RESUMEN

BACKGROUND: The lack of effective treatment options for Alzheimer's disease (AD) is of momentous societal concern. Synaptic loss is the hallmark of AD that correlates best with impaired memory and occurs early in the disease process, before the onset of clinical symptoms. We have developed a small-molecule, pyridazine-based series that enhances the structure and function of both the glial processes and the synaptic boutons that form the tripartite synapse. Previously, we have shown that these pyridazine derivatives exhibit profound efficacy in an amyloid precursor protein AD model. Here, we evaluated the efficacy of an advanced compound, LDN/OSU-0215111, in rTg4510 mice-an aggressive tauopathy model. METHODS: rTg4510 mice were treated orally with vehicle or LDN/OSU-0215111 (10 mg/kg) daily from the early symptomatic stage (2 months old) to moderate (4 months old) and severe (8 months old) disease stages. At each time point, mice were subjected to a battery of behavioral tests to assess the activity levels and cognition. Also, tissue collections were performed on a subset of mice to analyze the tripartite synaptic changes, neurodegeneration, gliosis, and tau phosphorylation as assessed by immunohistochemistry and Western blotting. At 8 months of age, a subset of rTg4510 mice treated with compound was switched to vehicle treatment and analyzed behaviorally and biochemically 30 days after treatment cessation. RESULTS: At both the moderate and severe disease stages, compound treatment normalized cognition and behavior as well as reduced synaptic loss, neurodegeneration, tau hyperphosporylation, and neuroinflammation. Importantly, after 30 days of treatment cessation, the benefits of compound treatment were sustained, indicating disease modification. We also found that compound treatment rapidly and robustly reduced tau hyperphosphorylation/deposition possibly via the inhibition of GSK3ß. CONCLUSIONS: The results show that LDN/OSU-0215111 provides benefits for multiple aspects of tauopathy-dependent pathology found in Alzheimer's disease including tripartite synapse normalization and reduction of toxic tau burden, which, in turn, likely accounted for normalized cognition and activity levels in compound-treated rTg4510 mice. This study, in combination with our previous work regarding the benefit of pyridazine derivatives against amyloid-dependent pathology, strongly supports pyridazine derivatives as a viable, clinically relevant, and disease-modifying treatment for many of the facets of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Transportador 2 de Aminoácidos Excitadores , Piridazinas/farmacología , Sinapsis/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Piridazinas/administración & dosificación , Piridazinas/análisis , Sinapsis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA