Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(4): 1803-1815, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33476369

RESUMEN

Hemin [Fe(III)-protoporphyrin IX] is known to bind tightly to single-stranded DNA and RNA molecules that fold into G-quadruplexes (GQ). Such complexes are strongly activated for oxidative catalysis. These heme•DNAzymes and ribozymes have found broad utility in bioanalytical and medicinal chemistry and have also been shown to occur within living cells. However, how a GQ is able to activate hemin is poorly understood. Herein, we report fast kinetic measurements (using stopped-flow UV-vis spectrophotometry) to identify the H2O2-generated activated heme species within a heme•DNAzyme that is active for the oxidation of a thioether substrate, dibenzothiophene (DBT). Singular value decomposition and global fitting analysis was used to analyze the kinetic data, with the results being consistent with the heme•DNAzyme's DBT oxidation being catalyzed by the initial Fe(III)heme-H2O2 complex. Such a complex has been predicted computationally to be a powerful oxidant for thioether substrates. In the heme•DNAzyme, the DNA GQ enhances both the kinetics of formation of the active intermediate as well as the oxidation step of DBT by the active intermediate. We show, using both stopped flow spectrophotometry and EPR measurements, that a classic Compound I is not observable during the catalytic cycle for thioether sulfoxidation.


Asunto(s)
ADN Catalítico/química , G-Cuádruplex , Hemina/química , Peróxido de Hidrógeno/química , Oxígeno/química , Sulfuros/química , Biocatálisis , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Tiofenos/química
2.
Nucleic Acids Res ; 43(8): 4191-201, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25824944

RESUMEN

Guanine-rich, single-stranded, DNAs and RNAs are able to fold to form G-quadruplexes that are held together by guanine base quartets. G-quadruplexes are known to bind ferric heme [Fe(III)-protoporphyrin IX] and to strongly activate such bound hemes toward peroxidase (1-electron oxidation) as well as oxygenase/peroxygenase (2-electron oxidation) activities. However, much remains unknown about how such activation is effected. Herein, we investigated whether G-quadruplexes were strictly required for heme activation or whether related multi-stranded DNA/RNA structures such as isoguanine (iG) quadruplexes and pentaplexes could also bind and activate heme. We found that iG-pentaplexes did indeed bind and activate heme comparably to G-quadruplexes; however, iG-quadruplexes did neither. Earlier structural and computational studies had suggested that while the geometry of backbone-unconstrained iG-quintets templated by cations such as Na(+) or NH4 (+) was planar, that of iG-quartets deviated from planarity. We hypothesize that the binding as well as activation of heme by DNA or RNA is strongly supported by the planarity of the nucleobase quartet or quintet that interacts directly with the heme.


Asunto(s)
ADN/química , G-Cuádruplex , Guanina/química , Hemo/metabolismo , Compuestos de Amonio/química , ADN/metabolismo , Guanina/metabolismo , Peroxidasas/metabolismo , Sodio/química , Temperatura
3.
Methods Mol Biol ; 2035: 357-368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31444762

RESUMEN

Catalytic DNAs (DNAzymes) with peroxidase-like activity have great potential in bioanalytical chemistry [1], owing to numerous advantages that DNA enzymes offer over conventional protein enzymes, including structural simplicity, low cost, thermal stability, and straightforward handling and preparation. Maximizing the efficiency of the peroxidase activity of such DNAzymes is a subject in need of review. In this chapter, we discuss the optimal experimental conditions for the peroxidase activity of these DNAzymes and describe general procedures for their utilization.


Asunto(s)
ADN Catalítico/química , G-Cuádruplex , Peroxidasas/metabolismo , Técnicas Biosensibles
4.
PLoS One ; 9(9): e106449, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25207541

RESUMEN

The expansion of a (G(4)C(2))n repeat within the human C9orf72 gene has been causally linked to a number of neurodegenerative diseases, most notably familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies have shown that the repeat expansion alters gene function in four ways, disrupting the gene's normal cellular roles and introducing toxic gain of function at the level of both DNA and RNA. (G(4)C(2))n DNA, as well as the RNA transcribed from it, are found to fold into four-stranded G-quadruplex structures. It has been shown that the toxicity of the RNA G-quadruplexes, often localized in intracellular RNA foci, lies in their ability to sequester many important RNA binding proteins. Herein we propose that a distinct toxic property of such RNA and DNA G-quadruplexes from the C9orf72 gene may arise from their ability to bind and oxidatively activate cellular heme. We show that G-quadruplexes formed by both (G(4)C(2))(4) RNA and DNA not only complex tightly with heme but also enhance its intrinsic peroxidase and oxidase propensities. By contrast, the antisense (C(4)G(2))(4) RNA and DNA neither bind heme nor influence its oxidative activity. Curiously, the ability of C9orf72 DNA and transcripts to bind and activate heme mirror similar properties that have been reported for the Aß peptide and its oligomers in Alzheimer's disease neurons. It is therefore conceivable that C9orf72 RNA G-quadruplex tangles play roles in sequestering intracellular heme and promoting oxidative damage in ALS and FTD analogous to those proposed for Aß peptide and its tangles in Alzheimer's Disease. Given that neurodegenerative diseases in general are characterized by mitochondrial and respiratory malfunctions, the role of C9orf72 DNA and RNA in heme sequestration as well as its inappropriate activation in ALS and FTD neurons may warrant examination.


Asunto(s)
Expansión de las Repeticiones de ADN , ADN/genética , G-Cuádruplex , Hemo/metabolismo , Enfermedades Neurodegenerativas/genética , Proteínas/genética , ARN/genética , Proteína C9orf72 , ADN/química , ADN/metabolismo , Humanos , Oxidación-Reducción , Peroxidasa/metabolismo , ARN/química , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA