Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 154(22): 224505, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241212

RESUMEN

By complexing with hydrophobic compounds, cyclodextrins afford increased solubility and thermodynamic stability to hardly soluble compounds, thereby underlining their invaluable applications in pharmaceutical and other industries. However, common cyclodextrins such as ß-cyclodextrin, suffer from limited solubility in water, which often leads to precipitation and formation of unfavorable aggregates, driving the search for better solvents. Here, we study the solvation of cyclodextrin in deep eutectic solvents (DESs), environmentally friendly media that possess unique properties. We focus on reline, the DES formed from choline chloride and urea, and resolve the mechanism through which its constituents elevate ß-cyclodextrin solubility in hydrated solutions compared to pure water or dry reline. Combining experiments and simulations, we determine that the remarkable solubilization of ß-cyclodextrin in hydrated reline is mostly due to the inclusion of urea inside ß-cyclodextrin's cavity and at its exterior surfaces. The role of choline chloride in further increasing solvation is twofold. First, it increases urea's solubility beyond the saturation limit in water, ultimately leading to much higher ß-cyclodextrin solubility in hydrated reline in comparison to aqueous urea solutions. Second, choline chloride increases urea's accumulation in ß-cyclodextrin's vicinity. Specifically, we find that the accumulation of urea becomes stronger at high reline concentrations, as the solution transitions from reline-in-water to water-in-reline, where water alone cannot be regarded as the solvent. Simulations further suggest that in dry DES, the mechanism of ß-cyclodextrin solvation changes so that reline acts as a quasi-single component solvent that lacks preference for the accumulation of urea or choline chloride around ß-cyclodextrin.

2.
J Am Chem Soc ; 141(45): 18056-18063, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31619038

RESUMEN

The aggregation of drugs and nutraceuticals in aqueous media is an outstanding problem for their efficacy and bioavailability. A common solution is to add excipients or hydrotropes that increase solubility and limit aggregation. Here we study caffeine, a widely consumed drug that undergoes oligomerization and aggregation in aqueous solutions. Combining partition and solubility experiments with molecular dynamics simulations, we determined the effect of sugars (mono- and disaccharides) on caffeine self-association and solubility. We find that sugars selectively increase the concentration of caffeine in its monomeric state, but decrease its solubility in all oligomeric forms. Thus, we determine that, in contrast to common hydrotropes, sugars act as selective hydrotropes toward caffeine, since they differentially act on specific solvated forms of the drug. We furthermore unravel the molecular mechanism for this selectivity, and comment on the general design principles that should help develop targeted excipients for bioavailability and taste modification in drugs and foods.


Asunto(s)
Cafeína/química , Azúcares/química , Simulación de Dinámica Molecular , Solubilidad
3.
Phys Chem Chem Phys ; 19(44): 29862-29871, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29110014

RESUMEN

Under environmental duress, many organisms accumulate large amounts of osmolytes - molecularly small organic solutes. Osmolytes are known to counteract stress, driving proteins to their compact native states by their exclusion from protein surfaces. In contrast, the effect of osmolytes on lipid membranes is poorly understood and widely debated. Many fully membrane-permeable osmolytes exert an apparent attractive force between lipid membranes, yet all proposed models fail to fully account for the origin of this force. We follow the quintessential osmolyte trimethylamine N-oxide (TMAO) and its interaction with dimyristoyl phosphatidylcholine (DMPC) membranes in aqueous solution. We find that by partitioning away from the inter-bilayer space, TMAO pushes adjacent membranes closer together. Experiments and simulations further show that the partitioning of TMAO away from the volume between bilayers stems from its exclusion from the lipid-water interface, similar to the mechanism of protein stabilization by osmolytes. We extend our analysis to show that the preferential interaction of other physiologically relevant solutes (including sugars and DMSO) also correlates with their effect on membrane bilayer interactions. Our study resolves a long-standing puzzle, explaining how osmolytes can increase membrane-membrane attraction or repulsion depending on their preferential interactions with lipids.


Asunto(s)
Lípidos de la Membrana , Metilaminas/farmacología , Membrana Dobles de Lípidos , Proteínas/química , Soluciones , Agua
4.
J Colloid Interface Sci ; 629(Pt A): 165-172, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063634

RESUMEN

To cope with stress induced by high salinity and hydrostatic pressure, some marine animals accumulate small organic solutes called osmolytes. Most notable among these osmolytes are the denaturant urea, and trimethylamine N-oxide (TMAO) that is known to stabilize proteins. Although their effects on proteins and nucleic acids have been extensively studied, osmolytes are less commonly studied in the context of lipids, which are a crucial component in many cellular processes. Here we resolve the mechanism for urea's action on the forces acting between lipid membranes, in the presence and absence of TMAO. We find that unlike the way urea denatures proteins, and by contrast to TMAO, urea does not preferentially interact with net-neutral lipid membranes. Instead, urea modulates the interactions between membranes mainly by weakening the van der Waals attraction between bilayers. Interestingly, regardless of concentration, the effects of urea and TMAO appear to be additive to a large extent, so that the presence of one osmolyte hardly changes the interaction of the other with lipid. Weak non-additive effects are likely due to structural changes in the lipid membrane induced by the osmolytes. Finally, we comment on the potential role of osmolytes acting together in the modification of lipid adhesion and fusion.


Asunto(s)
Ácidos Nucleicos , Urea , Animales , Urea/química , Metilaminas/química , Proteínas , Lípidos
5.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242704

RESUMEN

Deep eutectic solvents (DESs) show promise in pharmaceutical applications, most prominently as excellent solubilizers. Yet, because DES are complex multi-component mixtures, it is challenging to dissect the contribution of each component to solvation. Moreover, deviations from the eutectic concentration lead to phase separation of the DES, making it impractical to vary the ratios of components to potentially improve solvation. Water addition alleviates this limitation as it significantly decreases the melting temperature and stabilizes the DES single-phase region. Here, we follow the solubility of ß-cyclodextrin (ß-CD) in DES formed by the eutectic 2:1 mole ratio of urea and choline chloride (CC). Upon water addition to DES, we find that at almost all hydration levels, the highest ß-CD solubility is achieved at DES compositions that are shifted from the 2:1 ratio. At higher urea to CC ratios, due to the limited solubility of urea, the optimum composition allowing the highest ß-CD solubility is reached at the DES solubility limit. For mixtures with higher CC concentration, the composition allowing optimal solvation varies with hydration. For example, ß-CD solubility at 40 wt% water is enhanced by a factor of 1.5 for a 1:2 urea to CC mole ratio compared with the 2:1 eutectic ratio. We further develop a methodology allowing us to link the preferential accumulation of urea and CC in the vicinity of ß-CD to its increased solubility. The methodology we present here allows a dissection of solute interactions with DES components that is crucial for rationally developing improved drug and excipient formulations.

6.
Nanoscale ; 13(48): 20462-20470, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34787624

RESUMEN

Molecular self-assembly forms structures of well-defined organization that allow control over material properties, affording many advanced technological applications. Although the self-assembly of molecules is seemingly spontaneous, the structure into which they assemble can be altered by carefully modulating the driving forces. Here we study the self-assembly within the constraints of nanoconfined closed spherical volumes of polymeric nanocapsules, whereby a mixture of polyester-polyether block copolymer and methacrylic acid methyl methacrylate copolymer forms the entrapping capsule shell of nanometric dimensions. We follow the organization of the organic dye indigo carmine that serves as a model building unit due to its tendency to self-assemble into flat lamellar molecular sheets. Analysis of the structures formed inside the nanoconfined space using cryogenic-transmission electron microscopy (cryo-TEM) and cryogenic-electron tomography (cryo-ET) reveal that confinement drives the self-assembly to produce tubular scroll-like structures of the dye. Combined continuum theory and molecular modeling allow us to estimate the material properties of the confined nanosheets, including their elasticity and brittleness. Finally, we comment on the formation mechanism and forces that govern self-assembly under nanoconfinement.

7.
Food Chem ; 237: 1209-1215, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28763971

RESUMEN

Trehalose is revered for its multiple unique impacts on solution properties, including the ability to modulate the salty and bitter tastes of sodium and potassium salts. However, the molecular mechanisms underlying trehalose's effect on taste perception are unknown. Here we focus on the physico-chemical effect of trehalose to alter the activity of monovalent salts in aqueous solution. Using a modified isopiestic methodology that relies on contemporary vapor pressure osmometry, we elucidate how trehalose modifies the thermodynamic chemical activity of sodium and potassium chloride, as well as the effect of the salts on the sugar's activity. We find that trehalose has a specific impact on potassium chloride that is unlike that of other sugars or polyols. Remarkably, especially at low salt concentrations, trehalose considerably elevates the activity (or chemical potential) of KCl, raising the salt activity coefficient as high as ∼1.5 its value in the absence of the sugar. Moreover, in contrast to their action on other known carbohydrates, both KCl and NaCl act as salting-out agents towards trehalose, as seen in the elevated activity coefficient compared with its value in pure water (up to ∼1.5 higher at low sugar and salt concentrations). We discuss the possible relevance of our findings to the mechanism of trehalose taste perception modification, and point to necessary future directed sensory experiments needed to resolve the possible link between our findings and the emerging biochemical or physiological mechanisms involved.


Asunto(s)
Trehalosa/química , Cloruro de Potasio , Cloruro de Sodio , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA