Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(16): 166002, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701470

RESUMEN

Superconductivity has been one of the focal points in medium and high-entropy alloys (MEAs-HEAs) since the discovery of the body-centered cubic (bcc) HEA superconductor in 2014. Until now, the superconducting transition temperature (T_{c}) of most MEA and HEA superconductors has not exceeded 10 K. Here, we report a TaNbHfZr bulk MEA superconductor crystallized in the BCC structure with a T_{c} of 15.3 K which set a new record. During compression, T_{c} follows a dome-shaped curve. It reaches a broad maximum of roughly 15 K at around 70 GPa before decreasing to 9.3 K at 157.2 GPa. First-principles calculations attribute the dome-shaped curve to two competing effects, that is, the enhancement of the logarithmically averaged characteristic phonon frequency ω_{log} and the simultaneous suppression of the electron-phonon coupling constant λ. Thus, TaNbHfZr MEA may have a promising future for studying the underlying quantum physics, as well as developing new applications under extreme conditions.

2.
Small ; 18(5): e2104460, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35112501

RESUMEN

3D anisotropic functional properties (such as magnetic, electrical, thermal, and optical properties, etc.) in a single material are not only beneficial to the multipurpose of a material, but also helpful to enrich the regulatory dimensionality of functional materials. Herein, a colossal 3D electrical anisotropy of layered MAB-phase MoAlB single crystal is introduced and dissected. Using high-temperature metal-solution method, high-quality MoAlB single crystals are obtained and a surprisingly strong out-of-plane (σa /σb  = 1.43 × 105 , at 2 K) and in-plane (σa /σc  = 12.12, at 2 K) electrical anisotropies are first observed. After a series of experimental and theoretical investigations, it is demonstrated that the 3D anisotropic crystal structure and chemical bond of MoAlB result in its 3D anisotropic phonon vibration and electronic structure, influence the corresponding electron-electron as well as electron-phonon interactions, and finally give rise to its colossal 3D anisotropy of electrical conductivity. This work experimentally and theoretically proves MoAlB single crystal possessing the 3D anisotropies of crystal structure, chemical bond, phonon vibration, electronic structure, and electrical transport, but also provides a promising platform for the future design of functionalized electronic devices as well as synthesis of new and large-sized in-plane anisotropic 2D material (MoBene).

3.
Phys Chem Chem Phys ; 24(30): 18419-18426, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35880864

RESUMEN

Materials with superconductivity and a nontrivial band structure near the Fermi level are promising candidates in realizing topological superconductivity. Using first-principles calculations, we systematically investigated the stability, mechanical properties, superconductivity, electronic structures, and topological states of hexagonal TaC and NbC. The results show that they are stable and have excellent mechanical properties. We predicted that these two carbides are strong electron-phonon coupling superconductors with superconducting transition temperatures of 14.8 and 17.1 K, respectively. Strong coupling is mainly dominated by in-plane Ta/Nb atomic vibrations and in-plane Ta/Nb-dxy/dx2-y2 electronic orbitals. The electronic structure calculations demonstrate that a nodal line and a triply degenerate point coexist when not including the spin-orbit coupling (SOC) effect. After including the SOC effect, the nodal line is gapped. The complicated surface states are also calculated and need further experiments to verify. The present results indicate that the hexagonal TaC and NbC are potential candidates as topological superconductors, and pave the way towards exploring the superconductivity and topological materials in condensed matter systems.

4.
Inorg Chem ; 59(5): 3239-3248, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32068394

RESUMEN

Hexagon-like MAX-phase V4AlC3 single crystals grown by a high-temperature flux method were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDX). We report, for the first time, the first-order Raman spectra (RS) of V4AlC3 single crystals experimentally and theoretically. Via the combination of the results of thermogravimetric analysis, differential scanning calorimetry, XRD, FE-SEM, and EDX, the oxidation performance and mechanism of V4AlC3 single crystals between 300 and 1473 K in air were clarified. Importantly, we carefully investigated the room-temperature corrosion behaviors of V4AlC3 single crystals in concentrated acids [HCl, H2SO4, hydrofluoric acid (HF), and HNO3] and alkalis (NaOH and KOH). V4AlC3 single crystals are stable in concentrated HCl, H2SO4, and NaOH but unstable and even dissolved completely in concentrated KOH and HNO3. In particular, our XRD, RS, FE-SEM, and EDX results have confirmed that HF can dissolve the Al layers of V4AlC3 single crystals but cannot corrode V4C3 layers at room temperature, which eventually led to the formation of macroscopic V4C3Tx MXene. This reported approach of macro-sized V4C3Tx MXene can be adapted for obtaining other macroscopic MXenes and will inspire plenty of theoretical and experimental investigations to explore their intrinsic nature and applications, especially for electronic and photonic applications.

5.
Small ; 15(14): e1805420, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30848553

RESUMEN

1T phase MoS2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T-MoS2 /C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer-layer 1T-MoS2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T-MoS2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer-layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g-1 at 1 A g-1 and the capacity can maintain 870 mAh g-1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g-1 at 10 A g-1 . These results show that the 1T-MoS2 /C hybrid shows potential for use in high-performance lithium-ion batteries.

6.
Mater Horiz ; 10(8): 3162-3173, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37232288

RESUMEN

The development of high energy density and long cycle lifespan aqueous zinc ion batteries is hindered by the limited cathode materials and serious zinc dendrite growth. In this work, a defect-rich VS2 cathode material is manufactured by in situ electrochemical defect engineering under high charge cut-off voltage. Owing to the rich abundant vacancies and lattice distortion in the ab plane, the tailored VS2 can unlock the transport path of Zn2+ along the c-axis, enabling 3D Zn2+ transport along both the ab plane and c-axis, and reduce the electrostatic interaction between VS2 and zinc ions, thus achieving excellent rate capability (332 mA h g-1 and 227.8 mA h g-1 at 1 A g-1 and 20 A g-1, respectively). The thermally favorable intercalation and 3D rapid transport of Zn2+ in the defect-rich VS2 are verified by multiple ex situ characterizations and density functional theory (DFT) calculations. However, the long cycling stability of the Zn-VS2 battery is still unsatisfactory due to the Zn dendrite issue. It can be found that the introduction of an external magnetic field enables changing the movement of Zn2+, suppressing the growth of zinc dendrites, and resulting in enhanced cycling stability from about 90 to 600 h in the Zn||Zn symmetric cell. As a result, a high-performance Zn-VS2 full cell is realized by operating under a weak magnetic field, which shows an ultralong cycle lifespan with a capacity of 126 mA h g-1 after 7400 cycles at 5 A g-1, and delivers the highest energy density of 304.7 W h kg-1 and maximum power density of 17.8 kW kg-1.

7.
Nat Commun ; 13(1): 2156, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444181

RESUMEN

Although the single-impurity Kondo physics has already been well understood, the understanding of the Kondo lattice where a dense array of local moments couples to the conduction electrons is still far from complete. The ability of creating and tuning the Kondo lattice in non-f-electron systems will be great helpful for further understanding the Kondo lattice behavior. Here we show that the Pb intercalation in the charge-density-wave-driven narrow-electronic-band system 1T-TaS2 induces a transition from the insulating gap to a sharp Kondo resonance in the scanning tunneling microscopy measurements. It results from the Kondo screening of the localized moments in the 13-site Star-of-David clusters of 1T-TaS2. As increasing the Pb concentration, the narrow electronic band derived from the localized electrons shifts away from the Fermi level and the Kondo resonance peak is gradually suppressed. Our results pave the way for creating and tuning many-body electronic states in layered narrow-electronic-band materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA