Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(13): e202318030, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38308534

RESUMEN

The specific states of aggregation of metal atoms in sub-nanometer-sized gold clusters are related to the different quantum confinement volumes of electrons, leading to novel optical and electronic properties. These volumes can be tuned by changing the relative positions of the gold atoms to generate isomers. Studying the isomeric gold core and the electron coupling between the basic units is fundamentally important for nanoelectronic devices and luminescence; however, appropriate cases are lacking. In this study, the structure of the first staggered di-superatomic Au25 -S was solved using single-crystal X-ray diffraction. The optical properties of Au25 -S were studied by comparing with eclipsed Au25 -E. From Au25 -E to Au25 -S, changes in the electronic structures occurred, resulting in significantly different optical absorptions originating from the coupling between the two Au13 modules. Au25 -S shows a longer electron decay lifetime of 307.7 ps before populating the lowest triplet emissive state, compared to 1.29 ps for Au25 -E. The experimental and theoretical results show that variations in the geometric isomerism lead to distinct photophysical processes owing to isomerism-dependent electronic coupling. This study offers new insights into the connection between the geometric isomerism of nanosized building blocks and the optical properties of their assemblies, opening new possibilities for constructing function-specific nanomaterials.

2.
Chemistry ; 29(57): e202302146, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37449402

RESUMEN

This work elucidates the potential impact of intramolecular H-bonds within the pore walls of covalent organic frameworks (COFs) on proton conductivity. Employing DaTta and TaTta as representative hosts, it was observed that their innate proton conductivities (σ) are both unsatisfactory and σ(DaTta)<σ(TaTta). Intriguingly, the performance of both imidazole-loaded products, Im@DaTta and Im@TaTta is greatly improved, and the σ of Im@DaTta (0.91×10-2  S cm-1 ) even surpasses that of Im@TaTta (3.73×10-3  S cm-1 ) under 100 °C and 98 % relative humidity. The structural analysis, gas adsorption tests, and activation energy calculations forecast the influence of imidazole on the H-bonded system within the framework, leading to observed changes in proton conductivity. It is hypothesized that intramolecular H-bonds within the COF framework impede efficient proton transmission. Nevertheless, the inclusion of an imidazole group disrupts these intramolecular bonds, leading to the formation of an abundance of intermolecular H-bonds within the pore channels, thus contributing to a dramatic increase in proton conductivity. The related calculation of Density Functional Theory (DFT) provides further evidence for this inference.

3.
Angew Chem Int Ed Engl ; 62(22): e202219017, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988086

RESUMEN

Chiral Au nanoclusters have promising application prospects in chiral sensing, asymmetric catalysis, and chiroptics. However, enantiopure superatomic homogold clusters with crystallographic structures emitting bright circularly polarized luminescence (CPL) remain challenging. In this study, we designed chiral N-heterocyclic carbenes (NHCs), and for the first time enantioselectively synthesized a pair of monovalent cationic superatomic Au13 clusters. This new enantiomeric pair of clusters has a quasi-C2 symmetric core and exhibited CPL with an unprecedent solution-state quantum yield (QY) of 61 % among those of the atomically precise Au nanoclusters. DFT calculations provided insights into the circular dichroism behavior, and revealed the origin of CPL from superatomic Au clusters. This work opens a new avenue for developing novel homochiral nanoclusters using chiral NHC ligands and provides fundamental understanding of the origin of the chiroptics of metal clusters.

4.
Angew Chem Int Ed Engl ; 62(40): e202308194, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37366600

RESUMEN

X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal-organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm-1 .

5.
Nanoscale ; 16(5): 2662-2671, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230765

RESUMEN

Materials exhibiting X-ray-induced photochromism have consistently piqued the interest of researchers. Exploring the photochromic properties of such materials is valuable for understanding the structural changes and electron transfer processes that occur under high energy radiation, such as X-ray irradiation. Here, a crystalline silver(I) nanocluster synthesized from tert-butylacetylene silver was found to have the ability to exhibit color and photoluminescence changes upon exposure to X-ray radiation. The responsive behavior was observed across a wide temperature range of 100-300 K, with the ability to respond particularly well to soft X-rays (λ > 1 Å) and exhibit light responsiveness to hard X-rays (λ < 1 Å). By combining experimental findings including X-ray diffraction, X-ray photoelectron spectroscopy, electron spin resonance, etc. with theoretical calculations, we have proposed that X-ray irradiation induces electron transfer from chloride (Cl-) located in the center of the silver(I) nanocluster to the surrounding Ag14 in the skeleton. This represents the first documented example in which electron transfer induced by X-ray excitation has been observed, accompanied by a photochromism process, in silver nanoclusters. This study contributes to our understanding of X-ray-induced photochromism and the electron transfer process in silver cluster compounds. It also provides valuable insights and potential design strategies for applications such as photochromism, photoluminescence color change, and photoenergy conversion.

6.
Natl Sci Rev ; 11(7): nwae174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38887544

RESUMEN

Chemically modified superatoms have emerged as promising candidates in the new periodic table, in which Au13 and its doped M n Au13- n have been widely studied. However, their important counterpart, Ag13 artificial element, has not yet been synthesized. In this work, we report the synthesis of Ag13 nanoclusters using strong chelating ability and rigid ligands, that fills the gaps in the icosahedral superatomic metal clusters. After further doping Ag13 template with different degrees of Au atoms, we gained insight into the evolution of their optical properties. Theoretical calculations show that the kernel metal doping can modulate the transition of the excited-state electronic structure, and the electron transfer process changes from local excitation (LE) to charge transfer (CT) to LE. This study not only enriches the families of artificial superatoms, but also contributes to the understanding of the electronic states of superatomic clusters.

7.
Chem Commun (Camb) ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922126

RESUMEN

Detailed photophysical processes of two AuCu14 clusters with different substituents (-F or -C(CH3)3) of the thiol ligand were studied in this work. The electronic effect of the substituents led to structural shrinkage, thus enhancing the luminous intensity. The internal conversion (IC) and intersystem crossing (ISC) rates in the AuCu14-C(CH3)3 crystal were slower compared with the AuCu14-F crystal, which was caused by the steric effect.

8.
ACS Cent Sci ; 9(7): 1419-1426, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37521783

RESUMEN

X-ray scintillators are widely used in medical imaging, industrial flaw detection, security inspection, and space exploration. However, traditional commercial scintillators are usually associated with a high use cost because of their substantial toxicity and easy deliquescence. In this work, an atomically precise Au-Cu cluster scintillator (1) with a thermally activated delayed fluorescence (TADF) property was facilely synthesized, which is environmentally friendly and highly stable to water and oxygen. The TADF property of 1 endows it with an ultrahigh exciton utilization rate. Combined with the effective absorption of X-ray caused by the heavy-atom effect and a limited nonradiative transition caused by close packing in the crystal state, 1 exhibits an excellent radioluminescence property. Moreover, 1 has good processability for fabricating a large, flexible thin-film device (10 cm × 10 cm) for high-resolution X-ray imaging, which can reach 40 µm (12.5 LP mm-1). The properties mentioned earlier make the coinage metal cluster promising for use as a substitute for traditional commercial scintillators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA