Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 503(4): 2970-2976, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126636

RESUMEN

The interaction between viral protein Gag and cellular protein tumor susceptibility gene 101 (TSG101) is a crucial step in the HIV-1 replication cycle. This interaction initiates the viral assembly/budding via the cellular endosomal sorting complexes required for transport (ESCRT) pathway, making it a potential target for antiviral therapy. Here we developed a simple, robust, and reliable high-throughput screening (HTS) system based on enzyme-linked immunosorbent assay (ELISA) to identify compounds that inhibit HIV-1 replication by targeting Gag-TSG101 interaction. Through screening of the 9600-compound library using the established HTS system, several hit compounds, which inhibited Gag-TSG101 interaction, were identified. Subsequent assays revealed two hit compounds, HSM-9 and HSM-10, which have antiviral activity against CD4+ T cell-tropic NL4-3 and macrophage-tropic JR-CSF HIV-1 strains. These results suggest that our established HTS system is an indispensable tool for the identification of HIV-1 Gag-TSG101 interaction inhibitors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1 , Factores de Transcripción/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Humanos , Unión Proteica/efectos de los fármacos , Replicación Viral/efectos de los fármacos
2.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28778893

RESUMEN

Bacteria have multiple K+ uptake systems. Escherichia coli, for example, has three types of K+ uptake systems, which include the low-K+-inducible KdpFABC system and two constitutive systems, Trk (TrkAG and TrkAH) and Kup. Azorhizobium caulinodans ORS571, a rhizobium that forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, also has three types of K+ uptake systems. Through phylogenetic analysis, we found that A. caulinodans has two genes homologous to trkG and trkH, designated trkI and trkJ We also found that trkI is adjacent to trkA in the genome and these two genes are transcribed as an operon; however, trkJ is present at a distinct locus. Our results demonstrated that trkAI, trkJ, and kup were expressed in the wild-type stem nodules, whereas kdpFABC was not. Interestingly, Δkup and Δkup ΔkdpA mutants formed Fix- nodules, while the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant formed Fix+ nodules, suggesting that with the additional deletion of Trk system genes in the Δkup mutant, Fix+ nodule phenotypes were recovered. kdpFABC of the Δkup ΔtrkJ mutant was expressed in stem nodules, but not in the free-living state, under high-K+ conditions. However, kdpFABC of the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant was highly expressed even under high-K+ conditions. The cytoplasmic K+ levels in the Δkup ΔtrkA ΔtrkI mutant, which did not express kdpFABC under high-K+ conditions, were markedly lower than those in the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant. Taking all these results into consideration, we propose that TrkJ is involved in the repression of kdpFABC in response to high external K+ concentrations and that the TrkAI system is unable to function in stem nodules.IMPORTANCE K+ is a major cytoplasmic cation in prokaryotic and eukaryotic cells. Bacteria have multiple K+ uptake systems to control the cytoplasmic K+ levels. In many bacteria, the K+ uptake system KdpFABC is expressed under low-K+ conditions. For years, many researchers have argued over how bacteria sense K+ concentrations. Although KdpD of Escherichia coli is known to sense both cytoplasmic and extracellular K+ concentrations, the detailed mechanism of K+ sensing is still unclear. In this study, we propose that the transmembrane TrkJ protein of Azorhizobium caulinodans acts as a sensor for the extracellular K+ concentration and that high extracellular K+ concentrations repress the expression of KdpFABC via TrkJ.


Asunto(s)
Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/genética , Fabaceae/microbiología , Regulación Bacteriana de la Expresión Génica , Potasio/metabolismo , Proteínas Represoras/metabolismo , Simbiosis , Proteínas Bacterianas/metabolismo , Fabaceae/fisiología , Operón , Filogenia , Proteínas Represoras/genética
3.
Appl Environ Microbiol ; 78(17): 6251-61, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22752172

RESUMEN

Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.


Asunto(s)
Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteasa La/metabolismo , Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Fijación del Nitrógeno , Tallos de la Planta/microbiología , Proteasa La/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sesbania/microbiología , Sesbania/fisiología , Simbiosis
4.
Viruses ; 12(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952107

RESUMEN

Viral protein R (Vpr) is an accessory protein found in various primate lentiviruses, including human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) as well as simian immunodeficiency viruses (SIVs). Vpr modulates many processes during viral lifecycle via interaction with several of cellular targets. Previous studies showed that HIV-1 Vpr strengthened degradation of Mini-chromosome Maintenance Protein10 (MCM10) by manipulating DCAF1-Cul4-E3 ligase in proteasome-dependent pathway. However, whether Vpr from other primate lentiviruses are also associated with MCM10 degradation and the ensuing impact remain unknown. Based on phylogenetic analyses, a panel of primate lentiviruses Vpr/x covering main virus lineages was prepared. Distinct MCM10 degradation profiles were mapped and HIV-1, SIVmus and SIVrcm Vprs induced MCM10 degradation in proteasome-dependent pathway. Colocalization and interaction between MCM10 with these Vprs were also observed. Moreover, MCM10 2-7 interaction region was identified as a determinant region susceptible to degradation. However, MCM10 degradation did not alleviate DNA damage response induced by these Vpr proteins. MCM10 degradation by HIV-1 Vpr proteins was correlated with G2/M arrest, while induction of apoptosis and oligomerization formation of Vpr failed to alter MCM10 proteolysis. The current study demonstrated a distinct interplay pattern between primate lentiviruses Vpr proteins and MCM10.


Asunto(s)
Productos del Gen vpr/metabolismo , Lentivirus de los Primates/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Productos del Gen vpr/genética , Células HEK293 , VIH-1/genética , VIH-1/fisiología , Células HeLa , Humanos , Lentivirus de los Primates/química , Proteínas de Mantenimiento de Minicromosoma/genética , Filogenia , Proteolisis , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología
5.
J Gen Appl Microbiol ; 65(4): 209-213, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30726794

RESUMEN

Azorhizobium caulinodans, a kind of rhizobia, has a reb operon encoding pathogenic R-body components, whose expression is usually repressed by a transcription factor PraR. Mutation on praR induced a high expression of reb operon and the formation of aberrant nodules, in which both morphologically normal and shrunken host cells were observed. Histochemical GUS analyses of praR mutant expressing reb operon-uidA fusion revealed that the bacterial cells within the normal host cells highly expressed the reb operon, but rarely produced R-bodies. On the other hand, the bacterial cells within the shrunken host cells frequently produced R-bodies but rarely expressed the reb operon. This suggests that R-body production is not only regulated at the transcriptional level, but by other regulatory mechanisms as well.


Asunto(s)
Azorhizobium caulinodans/genética , Proteínas Bacterianas/genética , Eliminación de Gen , Operón , Tallos de la Planta/microbiología , Regulación Bacteriana de la Expresión Génica , Mutación , Fijación del Nitrógeno , Sesbania/microbiología , Simbiosis , Factores de Transcripción/genética
6.
PLoS One ; 11(9): e0163100, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27648839

RESUMEN

HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to the binding site for TSG101, whether Vpr implicates TSG101 overexpression effect has not been investigated. Here, we found that Vpr abrogates TSG101 overexpression effect to rescue viral production. Co-transfection of TSG101 and Gag with Vpr prevented TSG101-induced Gag accumulation in endosomes and lysosomes. In addition, Vpr rescued virus-like particle (VLP) production in a similar manner as a lysosomal inhibitor, Bafilomycin A1 indicating that Vpr inhibits TSG101-induced Gag downregulation via lysosomal pathway. Vpr and Gag interaction is required to counteract TSG101 overexpression effect since Vpr A30F mutant which is unable to interact with Gag and incorporate into virions, reduced ability to prevent Gag accumulation and to rescue VLP production. In addition, GST pull-down assays and Biacore analysis revealed that Vpr competed with TSG101 for Gag binding. These results indicate that Vpr overcomes the effects of TSG101 overexpression to support viral production by competing with TSG101 to bind Gag.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Productos del Gen gag/metabolismo , VIH-1/fisiología , Factores de Transcripción/metabolismo , Liberación del Virus/fisiología , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Western Blotting , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Productos del Gen gag/genética , Células HEK293 , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Fluorescente/métodos , Mutación , Unión Proteica , Factores de Transcripción/genética , Virión/genética , Virión/metabolismo , Virión/fisiología , Ensamble de Virus/genética , Liberación del Virus/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
7.
J Gen Appl Microbiol ; 61(6): 248-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26782655

RESUMEN

The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.


Asunto(s)
Azorhizobium caulinodans/metabolismo , Azorhizobium caulinodans/fisiología , Lipopolisacáridos/deficiencia , Lipopolisacáridos/metabolismo , Nodulación de la Raíz de la Planta , Sesbania/microbiología , Simbiosis , Azorhizobium caulinodans/genética , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA