Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(10): 4144-4156, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35768639

RESUMEN

The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.


Asunto(s)
Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Distribución Tisular , Antidepresivos/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047571

RESUMEN

The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein ß-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream signaling pathways. These processes are triggered through receptor phosphorylation by G protein-coupled receptor kinases (GRKs), although the precise phosphorylation sites and their role in recruiting ß-arrestin to the D1R remains incompletely described. In this study, we have used detailed mutational and in situ phosphorylation analyses to completely identify the GRK-mediated phosphorylation sites on the D1R. Our results indicate that GRKs can phosphorylate 14 serine and threonine residues within the C-terminus and the third intracellular loop (ICL3) of the receptor, and that this occurs in a hierarchical fashion, where phosphorylation of the C-terminus precedes that of the ICL3. Using ß-arrestin recruitment assays, we identified a cluster of phosphorylation sites in the proximal region of the C-terminus that drive ß-arrestin binding to the D1R. We further provide evidence that phosphorylation sites in the ICL3 are responsible for ß-arrestin activation, leading to receptor internalization. Our results suggest that distinct D1R GRK phosphorylation sites are involved in ß-arrestin binding and activation.


Asunto(s)
Arrestinas , Receptores Dopaminérgicos , Fosforilación , beta-Arrestinas/metabolismo , Receptores Dopaminérgicos/metabolismo , Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo
3.
Mol Psychiatry ; 26(11): 6704-6722, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33859356

RESUMEN

Ketamine, a racemic mixture of (S)-ketamine and (R)-ketamine enantiomers, has been used as an anesthetic, analgesic and more recently, as an antidepressant. However, ketamine has known abuse liability (the tendency of a drug to be used in non-medical situations due to its psychoactive effects), which raises concerns for its therapeutic use. (S)-ketamine was recently approved by the United States' FDA for treatment-resistant depression. Recent studies showed that (R)-ketamine has greater efficacy than (S)-ketamine in preclinical models of depression, but its clinical antidepressant efficacy has not been established. The behavioral effects of racemic ketamine have been studied extensively in preclinical models predictive of abuse liability in humans (self-administration and conditioned place preference [CPP]). In contrast, the behavioral effects of each enantiomer in these models are unknown. We show here that in the intravenous drug self-administration model, the gold standard procedure to assess potential abuse liability of drugs in humans, rats self-administered (S)-ketamine but not (R)-ketamine. Subanesthetic, antidepressant-like doses of (S)-ketamine, but not of (R)-ketamine, induced locomotor activity (in an opioid receptor-dependent manner), induced psychomotor sensitization, induced CPP in mice, and selectively increased metabolic activity and dopamine tone in medial prefrontal cortex (mPFC) of rats. Pharmacological screening across thousands of human proteins and at biological targets known to interact with ketamine yielded divergent binding and functional enantiomer profiles, including selective mu and kappa opioid receptor activation by (S)-ketamine in mPFC. Our results demonstrate divergence in the pharmacological, functional, and behavioral effects of ketamine enantiomers, and suggest that racemic ketamine's abuse liability in humans is primarily due to the pharmacological effects of its (S)-enantiomer.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Ketamina , Animales , Antidepresivos/uso terapéutico , Depresión/metabolismo , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Ketamina/uso terapéutico , Ratones , Ratas , Estereoisomerismo
4.
Mol Pharmacol ; 100(4): 372-387, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353882

RESUMEN

ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for antiproliferative effects. Curve-shift experiments using D2R-mediated ß-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. SIGNIFICANCE STATEMENT: ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. This study demonstrates that ONC201 antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anticancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.


Asunto(s)
Antineoplásicos/metabolismo , Antagonistas de los Receptores de Dopamina D2/metabolismo , Imidazoles/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Receptores de Dopamina D2/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células CHO , Cricetinae , Cricetulus , Antagonistas de los Receptores de Dopamina D2/química , Antagonistas de los Receptores de Dopamina D2/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Imidazoles/química , Imidazoles/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Receptores de Dopamina D2/química
5.
Mol Psychiatry ; 25(9): 2070-2085, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626912

RESUMEN

Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic ß-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic ß-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in ß-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in ß-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which ß-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, ß-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.


Asunto(s)
Dopamina , Células Secretoras de Insulina , Animales , Dopamina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
6.
Bioorg Med Chem Lett ; 31: 127696, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221389

RESUMEN

MLS1082 is a structurally novel pyrimidone-based D1-like dopamine receptor positive allosteric modulator. Potentiation of D1 dopamine receptor (D1R) signaling is a therapeutic strategy for treating neurocognitive disorders. Here, we investigate the relationship between D1R potentiation and two prominent structural features of MLS1082, namely the pendant N-aryl and C-alkyl groups on the pyrimidone ring. To this end, we synthesized 24 new analogues and characterized their ability to potentiate dopamine signaling at the D1R and the closely related D5R. We identified structure-activity relationship trends for both aryl and alkyl modifications and our efforts afforded several analogues with improvements in activity. The most effective analogues demonstrated an approximately 8-fold amplification of dopamine-mediated D1R signaling. These findings advance the understanding of structural moieties underlying the activity of pyrimidone-based D1R positive allosteric modulators.


Asunto(s)
Agonistas de Dopamina/farmacología , Desarrollo de Medicamentos , Receptores de Dopamina D1/agonistas , Regulación Alostérica/efectos de los fármacos , Agonistas de Dopamina/síntesis química , Agonistas de Dopamina/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Receptores de Dopamina D1/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
7.
PLoS Comput Biol ; 14(1): e1005948, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337986

RESUMEN

The dopamine D2 and D3 receptors (D2R and D3R) are important targets for antipsychotics and for the treatment of drug abuse. SB269652, a bitopic ligand that simultaneously binds both the orthosteric binding site (OBS) and a secondary binding pocket (SBP) in both D2R and D3R, was found to be a negative allosteric modulator. Previous studies identified Glu2.65 in the SBP to be a key determinant of both the affinity of SB269652 and the magnitude of its cooperativity with orthosteric ligands, as the E2.65A mutation decreased both of these parameters. However, the proposed hydrogen bond (H-bond) between Glu2.65 and the indole moiety of SB269652 is not a strong interaction, and a structure activity relationship study of SB269652 indicates that this H-bond may not be the only element that determines its allosteric properties. To understand the structural basis of the observed phenotype of E2.65A, we carried out molecular dynamics simulations with a cumulative length of ~77 µs of D2R and D3R wild-type and their E2.65A mutants bound to SB269652. In combination with Markov state model analysis and by characterizing the equilibria of ligand binding modes in different conditions, we found that in both D2R and D3R, whereas the tetrahydroisoquinoline moiety of SB269652 is stably bound in the OBS, the indole-2-carboxamide moiety is dynamic and only intermittently forms H-bonds with Glu2.65. Our results also indicate that the E2.65A mutation significantly affects the overall shape and size of the SBP, as well as the conformation of the N terminus. Thus, our findings suggest that the key role of Glu2.65 in mediating the allosteric properties of SB269652 extends beyond a direct interaction with SB269652, and provide structural insights for rational design of SB269652 derivatives that may retain its allosteric properties.


Asunto(s)
Indoles/química , Isoquinolinas/química , Mutación , Receptores de Dopamina D2/química , Receptores de Dopamina D3/química , Regulación Alostérica , Sitio Alostérico , Teorema de Bayes , Ácidos Carboxílicos , Análisis por Conglomerados , Simulación por Computador , Humanos , Enlace de Hidrógeno , Ligandos , Cadenas de Markov , Simulación de Dinámica Molecular , Fenotipo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Relación Estructura-Actividad
8.
Nature ; 555(7695): 170-172, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517027
9.
Nature ; 555(7695): 170-172, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32095019
10.
Mol Pharmacol ; 94(4): 1197-1209, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30068735

RESUMEN

The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D1 receptor agonists possess known clinical liabilities. We discovered two structurally distinct D1 receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library. Both compounds potentiate dopamine-stimulated G protein- and ß-arrestin-mediated signaling and increase the affinity of dopamine for the D1 receptor with low micromolar potencies. Neither compound displayed any intrinsic agonist activity. Both compounds were also found to potentiate the efficacy of partial agonists. We tested maximally effective concentrations of each PAM in combination to determine if the compounds might act at separate or similar sites. In combination, MLS1082 + MLS6585 produced an additive potentiation of dopamine potency beyond that caused by either PAM alone for both ß-arrestin recruitment and cAMP accumulation, suggesting diverse sites of action. In addition, MLS6585, but not MLS1082, had additive activity with the previously described D1 receptor PAM "Compound B," suggesting that MLS1082 and Compound B may share a common binding site. A point mutation (R130Q) in the D1 receptor was found to abrogate MLS1082 activity without affecting that of MLS6585, suggesting this residue may be involved in the binding/activity of MLS1082 but not that of MLS6585. Together, MLS1082 and MLS6585 may serve as important tool compounds for the characterization of diverse allosteric sites on the D1 receptor as well as the development of optimized lead compounds for therapeutic use.


Asunto(s)
Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Receptores Dopaminérgicos/metabolismo , Animales , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Transducción de Señal/fisiología , beta-Arrestinas/metabolismo
13.
Mol Pharmacol ; 86(1): 96-105, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24755247

RESUMEN

A high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and ß-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate ß-arrestin recruitment. One such compound (MLS1547; 5-chloro-7-[(4-pyridin-2-ylpiperazin-1-yl)methyl]quinolin-8-ol) is a highly efficacious agonist at D2 receptor-mediated G protein-linked signaling, but does not recruit ß-arrestin as demonstrated using two different assays. This compound does, however, antagonize dopamine-stimulated ß-arrestin recruitment to the D2 receptor. In an effort to investigate the chemical scaffold of MLS1547 further, we characterized a set of 24 analogs of MLS1547 with respect to their ability to inhibit cAMP accumulation or stimulate ß-arrestin recruitment. A number of the analogs were similar to MLS1547 in that they displayed agonist activity for inhibiting cAMP accumulation, but did not stimulate ß-arrestin recruitment (i.e., they were highly biased). In contrast, other analogs displayed various degrees of G protein signaling bias. These results provided the basis to use pharmacophore modeling and molecular docking analyses to build a preliminary structure-activity relationship of the functionally selective properties of this series of compounds. In summary, we have identified and characterized a novel G protein-biased agonist of the D2 dopamine receptor and identified structural features that may contribute to its biased signaling properties.


Asunto(s)
Arrestinas/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Arrestinas/metabolismo , Células CHO , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Unión Proteica/fisiología , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , beta-Arrestinas
14.
Am J Physiol Renal Physiol ; 307(11): F1238-48, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25339698

RESUMEN

The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D1-like dopamine receptors [dopamine D1 and D5 receptors (D1Rs and D5Rs, respectively)] and the α1A-adrenergic receptor (α1A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D1Rs and D5Rs) or antinatriuresis (via α1A-ARs). We tested the hypothesis that the D1R/D5R regulates the α1A-AR. D1-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with α1A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D1R/D5R agonist fenoldopam resulted in decreased D1R and D5R expression but increased α1A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na(+)-K(+)-ATPase from the plasma membrane to the cytosol that was partially reversed by an α1A-AR agonist, which by itself induced Na(+)-K(+)-ATPase translocation from the cytosol to the plasma membrane. The α1A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na(+)-K(+)-ATPase activity. To determine the interaction among D1Rs, D5Rs, and α1A-ARs in vivo, we used phenylephrine and A610603 to decrease Na(+) excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na(+) excretion in wild-type mice and its abolition in D1R knockout, D5R knockout, and D1R-D5R double-knockout mice. Our results demonstrate the ability of the D1-like dopamine receptors to regulate the expression and activity of α1A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Receptores Adrenérgicos alfa 1/biosíntesis , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/fisiología , Animales , Biotinilación , Presión Sanguínea/fisiología , Línea Celular , Membrana Celular/metabolismo , Humanos , Túbulos Renales Proximales/citología , Ratones , Ratones Noqueados , Receptores de Dopamina D5/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
15.
J Neurosci ; 32(1): 344-55, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219295

RESUMEN

Pharmacological studies suggest that dopamine release from lateral olivocochlear efferent neurons suppresses spontaneous and sound-evoked activity in cochlear nerve fibers and helps control noise-induced excitotoxicity; however, the literature on cochlear expression and localization of dopamine receptors is contradictory. To better characterize cochlear dopaminergic signaling, we studied receptor localization using immunohistochemistry or reverse transcriptase PCR and assessed histopathology, cochlear responses and olivocochlear function in mice with targeted deletion of each of the five receptor subtypes. In normal ears, D1, D2, and D5 receptors were detected in microdissected immature (postnatal days 10-13) spiral ganglion cells and outer hair cells but not inner hair cells. D4 was detected in spiral ganglion cells only. In whole cochlea samples from adults, transcripts for D1, D2, D4, and D5 were present, whereas D3 mRNA was never detected. D1 and D2 immunolabeling was localized to cochlear nerve fibers, near the first nodes of Ranvier (D2) and in the inner spiral bundle region (D1 and D2) where presynaptic olivocochlear terminals are found. No other receptor labeling was consistent. Cochlear function was normal in D3, D4, and D5 knock-outs. D1 and D2 knock-outs showed slight, but significant enhancement and suppression, respectively, of cochlear responses, both in the neural output [auditory brainstem response (ABR) wave 1] and in outer hair cell function [distortion product otoacoustic emissions (DPOAEs)]. Vulnerability to acoustic injury was significantly increased in D2, D4 and D5 lines: D1 could not be tested, and no differences were seen in D3 mutants, consistent with a lack of receptor expression. The increased vulnerability in D2 knock-outs was seen in DPOAEs, suggesting a role for dopamine in the outer hair cell area. In D4 and D5 knock-outs, the increased noise vulnerability was seen only in ABRs, consistent with a role for dopaminergic signaling in minimizing neural damage.


Asunto(s)
Cóclea/fisiología , Dopamina/fisiología , Audición/fisiología , Receptores Dopaminérgicos/genética , Transducción de Señal/fisiología , Animales , Cóclea/química , Cóclea/citología , Femenino , Células Ciliadas Auditivas Internas/química , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/química , Células Ciliadas Auditivas Externas/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Fenotipo , Receptores Dopaminérgicos/clasificación , Receptores Dopaminérgicos/deficiencia , Ganglio Espiral de la Cóclea/química , Ganglio Espiral de la Cóclea/fisiología
16.
Mol Pharmacol ; 84(2): 190-200, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23680635

RESUMEN

The D(1) dopamine receptor (D(1)R) has been proposed to form a hetero-oligomer with the D(2) dopamine receptor (D(2)R), which in turn results in a complex that couples to phospholipase C-mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D(1) and D(2) subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D(1)-D(2) heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein-coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of G(qα) with the D(1) and D(2) dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing G(qα) with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D(1)R and D(2)R cotransfected cells. Moreover, sequestration of G(ßγ) subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D(1)R/D(2)R-mediated calcium signaling involves more than receptor-mediated G(q) protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D(1)-D(2) heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Dopamina/farmacología , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas
17.
Int J Neuropsychopharmacol ; 16(2): 445-58, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22827916

RESUMEN

Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (∼98 and ∼29 nm respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose-effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction.


Asunto(s)
Buspirona/farmacología , Cocaína/administración & dosificación , Dopaminérgicos/farmacología , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D4/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Análisis de Varianza , Animales , Cocaína/farmacología , Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Células HEK293 , Humanos , Macaca mulatta , Masculino , Unión Proteica/efectos de los fármacos , Receptores de Dopamina D3/genética , Receptores de Dopamina D4/genética , Autoadministración , Serotonina/farmacología , Tritio/farmacocinética
18.
Trends Pharmacol Sci ; 44(10): 637-639, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37599183

RESUMEN

Rational drug design for G protein-coupled receptors (GPCRs) remains a challenging area. A new study from the Xu, Roth, and Zhang groups provides a complete set of active structures for the entire dopamine receptor family bound with rotigotine that will aid in designing selective agonists for these important therapeutic targets.


Asunto(s)
Diseño de Fármacos , Receptores Dopaminérgicos , Humanos , Ligandos
19.
Biomolecules ; 13(10)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892234

RESUMEN

The D2 dopamine receptor (D2R) signals through both G proteins and ß-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. ß-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for ß-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for ß-arrestin recruitment to the D2R, and the role of GRKs in D2R-ß-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which ß-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated ß-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased ß-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-ß-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance ß-arrestin recruitment and activation independently of receptor phosphorylation.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G , Receptores Dopaminérgicos , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Células HEK293
20.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425766

RESUMEN

Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA