Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Physiol Rev ; 90(4): 1383-435, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20959619

RESUMEN

(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.


Asunto(s)
Autofagia/fisiología , Células Eucariotas/metabolismo , Mamíferos/fisiología , Animales , Células Eucariotas/patología , Humanos , Fagosomas/metabolismo , Transducción de Señal , Estrés Fisiológico
2.
Hum Mol Genet ; 22(22): 4528-44, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23804751

RESUMEN

Inhibition of the insulin/insulin-like growth factor signalling pathway increases lifespan and protects against neurodegeneration in model organisms, and has been considered as a potential therapeutic target. This pathway is upstream of mTORC1, a negative regulator of autophagy. Thus, we expected autophagy to be activated by insulin-like growth factor-1 (IGF-1) inhibition, which could account for many of its beneficial effects. Paradoxically, we found that IGF-1 inhibition attenuates autophagosome formation. The reduced amount of autophagosomes present in IGF-1R depleted cells can be, at least in part, explained by a reduced formation of autophagosomal precursors at the plasma membrane. In particular, IGF-1R depletion inhibits mTORC2, which, in turn, reduces the activity of protein kinase C (PKCα/ß). This perturbs the actin cytoskeleton dynamics and decreases the rate of clathrin-dependent endocytosis, which impacts autophagosome precursor formation. Finally, with important implications for human diseases, we demonstrate that pharmacological inhibition of the IGF-1R signalling cascade reduces autophagy also in zebrafish and mice models. The novel link we describe here has important consequences for the interpretation of genetic experiments in mammalian systems and for evaluating the potential of targeting the IGF-1R receptor or modulating its signalling through the downstream pathway for therapeutic purposes under clinically relevant conditions, such as neurodegenerative diseases, where autophagy stimulation is considered beneficial.


Asunto(s)
Autofagia/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/genética , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Macrólidos/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Autophagy ; : 1-3, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358357

RESUMEN

In the prodromal phase of neurodegenerative diseases, microglia switch to an activated state resulting in increased secretion of pro-inflammatory factors. We reported that C - C chemokine ligand 3 (CCL3), C - C chemokine ligand 4 (CCL4) and C - C chemokine ligand 5 (CCL5) contained in the secretome of activated microglia inhibit neuronal autophagy via a non-cell autonomous mechanism. These chemokines bind and activate neuronal C - C chemokine receptor type 5 (CCR5), which, in turn, promotes phosphoinositide 3-kinase (PI3K) - protein kinase B (PKB, or AKT) - mammalian target of rapamycin complex 1 (mTORC1) pathway activation, which inhibits autophagy, thus causing the accumulation of aggregate-prone proteins in the cytoplasm of neurons. The levels of CCR5 and its chemokine ligands are increased in the brains of pre-manifesting Huntington disease (HD) and tauopathy mouse models. CCR5 accumulation might be due to a self-amplifying mechanism, since CCR5 is a substrate of autophagy and CCL5-CCR5-mediated autophagy inhibition impairs CCR5 degradation. Furthermore, pharmacological, or genetic inhibition of CCR5 rescues mTORC1-autophagy dysfunction and improves neurodegeneration in HD and tauopathy mouse models, suggesting that CCR5 hyperactivation is a pathogenic signal driving the progression of these diseases.

4.
Neuron ; 111(13): 2021-2037.e12, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37105172

RESUMEN

In neurodegenerative diseases, microglia switch to an activated state, which results in excessive secretion of pro-inflammatory factors. Our work aims to investigate how this paracrine signaling affects neuronal function. Here, we show that activated microglia mediate non-cell-autonomous inhibition of neuronal autophagy, a degradative pathway critical for the removal of toxic, aggregate-prone proteins accumulating in neurodegenerative diseases. We found that the microglial-derived CCL-3/-4/-5 bind and activate neuronal CCR5, which in turn promotes mTORC1 activation and disrupts autophagy and aggregate-prone protein clearance. CCR5 and its cognate chemokines are upregulated in the brains of pre-manifesting mouse models for Huntington's disease (HD) and tauopathy, suggesting a pathological role of this microglia-neuronal axis in the early phases of these diseases. CCR5 upregulation is self-sustaining, as CCL5-CCR5 autophagy inhibition impairs CCR5 degradation itself. Finally, pharmacological or genetic inhibition of CCR5 rescues mTORC1 hyperactivation and autophagy dysfunction, which ameliorates HD and tau pathologies in mouse models.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Ratones , Animales , Microglía/metabolismo , Transducción de Señal , Autofagia , Enfermedades Neurodegenerativas/metabolismo , Proteínas/metabolismo , Enfermedad de Huntington/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
5.
Cell Death Differ ; 29(5): 1055-1070, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34848853

RESUMEN

Autophagic decline is considered a hallmark of ageing. The activity of this intracytoplasmic degradation pathway decreases with age in many tissues and autophagy induction ameliorates ageing in many organisms, including mice. Autophagy is a critical protective pathway in neurons and ageing is the primary risk factor for common neurodegenerative diseases. Here, we describe that autophagosome biogenesis declines with age in mouse brains and that this correlates with increased expression of the SORBS3 gene (encoding vinexin) in older mouse and human brain tissue. We characterise vinexin as a negative regulator of autophagy. SORBS3 knockdown increases F-actin structures, which compete with YAP/TAZ for binding to their negative regulators, angiomotins, in the cytosol. This promotes YAP/TAZ translocation into the nucleus, thereby increasing YAP/TAZ transcriptional activity and autophagy. Our data therefore suggest brain autophagy decreases with age in mammals and that this is likely, in part, mediated by increasing levels of vinexin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Musculares , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/genética , Animales , Autofagia/genética , Encéfalo/metabolismo , Humanos , Mamíferos/metabolismo , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
6.
STAR Protoc ; 2(2): 100500, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33997814

RESUMEN

We present a protocol for in vivo siRNA-mediated knockdown of a gene of interest in mouse liver using systemic delivery via intravenous injection. We describe a step-by-step protocol for delivery of siRNA particles, with tips on how to optimize dosage. We detail steps for feeding/starving cycles as well as for liver tissue isolation, followed by gene expression analysis, measured at the mRNA and protein levels. For complete information on the generation and use of this protocol, please refer to Wrobel et al. (2020).


Asunto(s)
Técnicas de Silenciamiento del Gen , Hígado/metabolismo , ARN Interferente Pequeño/farmacología , Inanición/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Animales , Ratones , ARN Interferente Pequeño/genética , Inanición/genética , Ubiquitina Tiolesterasa/sangre , Ubiquitina Tiolesterasa/genética
7.
Nat Chem Biol ; 4(5): 295-305, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18391949

RESUMEN

Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.


Asunto(s)
Autofagia/efectos de los fármacos , Enfermedad de Huntington/fisiopatología , Proteínas Quinasas/fisiología , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Clonidina/farmacología , AMP Cíclico/metabolismo , Humanos , Enfermedad de Huntington/inmunología , Receptores de Imidazolina/antagonistas & inhibidores , Minoxidil/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR , Fosfolipasas de Tipo C/metabolismo , Verapamilo/farmacología
8.
Cell Rep ; 33(13): 108564, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378666

RESUMEN

The mechanistic target of rapamycin complex 2 (mTORC2) controls cell metabolism and survival in response to environmental inputs. Dysregulation of mTORC2 signaling has been linked to diverse human diseases, including cancer and metabolic disorders, highlighting the importance of a tightly controlled mTORC2. While mTORC2 assembly is a critical determinant of its activity, the factors regulating this event are not well understood, and it is unclear whether this process is regulated by growth factors. Here, we present data, from human cell lines and mice, describing a mechanism by which growth factors regulate ubiquitin-specific protease 9X (USP9X) deubiquitinase to stimulate mTORC2 assembly and activity. USP9X removes Lys63-linked ubiquitin from RICTOR to promote its interaction with mTOR, thereby facilitating mTORC2 signaling. As mTORC2 is central for cellular homeostasis, understanding the mechanisms regulating mTORC2 activation toward its downstream targets is vital for our understanding of physiological processes and for developing new therapeutic strategies in pathology.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Animales , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Transducción de Señal , Ubiquitina Tiolesterasa/genética
9.
Sci Rep ; 9(1): 10147, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300716

RESUMEN

Autophagy is an evolutionarily conserved process across eukaryotes that degrades cargoes like aggregate-prone proteins, pathogens, damaged organelles and macromolecules via delivery to lysosomes. The process involves the formation of double-membraned autophagosomes that engulf the cargoes destined for degradation, sometimes with the help of autophagy receptors like p62, which are themselves autophagy substrates. LC3-II, a standard marker for autophagosomes, is generated by the conjugation of cytosolic LC3-I to phosphatidylethanolamine (PE) on the surface of nascent autophagosomes. As LC3-II is relatively specifically associated with autophagosomes and autolysosomes (in the absence of conditions stimulating LC3-associated phagocytosis), quantification of LC3-positive puncta is considered as a gold-standard assay for assessing the numbers of autophagosomes in cells. Here we find that the endogenous LC3-positive puncta become larger in cells where autophagosome formation is abrogated, and are prominent even when LC3-II is not formed. This occurs even with transient and incomplete inhibition of autophagosome biogenesis. This phenomenon is due to LC3-I sequestration to p62 aggregates, which accumulate when autophagy is impaired. This observation questions the reliability of LC3-immunofluorescence assays in cells with compromised autophagy.


Asunto(s)
Autofagia/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética
10.
Nat Commun ; 10(1): 1817, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000720

RESUMEN

Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease manifest with the neuronal accumulation of toxic proteins. Since autophagy upregulation enhances the clearance of such proteins and ameliorates their toxicities in animal models, we and others have sought to re-position/re-profile existing compounds used in humans to identify those that may induce autophagy in the brain. A key challenge with this approach is to assess if any hits identified can induce neuronal autophagy at concentrations that would be seen in humans taking the drug for its conventional indication. Here we report that felodipine, an L-type calcium channel blocker and anti-hypertensive drug, induces autophagy and clears diverse aggregate-prone, neurodegenerative disease-associated proteins. Felodipine can clear mutant α-synuclein in mouse brains at plasma concentrations similar to those that would be seen in humans taking the drug. This is associated with neuroprotection in mice, suggesting the promise of this compound for use in neurodegeneration.


Asunto(s)
Autofagia/efectos de los fármacos , Reposicionamiento de Medicamentos , Felodipino/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Animales Modificados Genéticamente , Línea Celular , Corteza Cerebral/citología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Embrión no Mamífero , Felodipino/uso terapéutico , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Cultivo Primario de Células , Porcinos , Porcinos Enanos , Resultado del Tratamiento , Pez Cebra , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Nat Commun ; 7: 13821, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929117

RESUMEN

Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Chaperonina con TCP-1/metabolismo , Proteína Huntingtina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Ataxina-3/metabolismo , Drosophila , Femenino , Células HeLa , Humanos , Lisosomas/metabolismo , Masculino , Ratones Transgénicos , Proteínas de Unión al ARN/metabolismo
13.
Nat Cell Biol ; 13(4): 453-60, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21394080

RESUMEN

mTOR (mammalian target of rapamycin) signalling and macroautophagy (henceforth autophagy) regulate numerous pathological and physiological processes, including cellular responses to altered nutrient levels. However, the mechanisms regulating mTOR and autophagy remain incompletely understood. Lysosomes are dynamic intracellular organelles intimately involved both in the activation of mTOR complex 1 (mTORC1) signalling and in degrading autophagic substrates. Here we report that lysosomal positioning coordinates anabolic and catabolic responses with changes in nutrient availability by orchestrating early plasma-membrane signalling events, mTORC1 signalling and autophagy. Activation of mTORC1 by nutrients correlates with its presence on peripheral lysosomes that are physically close to the upstream signalling modules, whereas starvation causes perinuclear clustering of lysosomes, driven by changes in intracellular pH. Lysosomal positioning regulates mTORC1 signalling, which in turn influences autophagosome formation. Lysosome positioning also influences autophagosome-lysosome fusion rates, and thus controls autophagic flux by acting at both the initiation and termination stages of the process. Our findings provide a physiological role for the dynamic state of lysosomal positioning in cells as a coordinator of mTORC1 signalling with autophagic flux.


Asunto(s)
Alimentos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Proteínas/metabolismo , Autofagia/fisiología , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Proteínas/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA