RESUMEN
Streptococcus suis negatively impacts swine health, posing diagnostic and preventative challenges. S. suis can induce disease and also quietly reside on mucosal surfaces. The limited use of diagnostic tools to identify disease-associated strains and rule out differential diagnoses, alongside the complex ecology of S. suis, poses significant challenges in comprehending this important pathogen and defining pathotypes. This study evaluated 2,379 S. suis central nervous system (CNS) isolates from diagnostic submissions between 2015 and 2019. Isolates originating from submissions with histologic evidence of CNS infection (n = 1,032) were further characterized by standard and advanced diagnostic techniques. We identified 29 S. suis serotypes and 4 reclassified serotypes as putative causes of CNS disease. Among these, serotypes 1 and 7 emerged as the predominant putative causes of CNS infection (32% of submissions). Furthermore, 51 sequence types (STs), of which 15 were novel, were detected with ST1 predominating. Through whole-genome sequencing of 145 isolates, we observed that five commonly used virulence-associated genes (VAGs; epf, mrp, sly, ofs, and srtF) were not present in most disease-associated isolates, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) yielded false-positive results in 7% of isolates. These data indicate that (i) clinical signs and site of isolation alone are insufficient for defining a pathotype, (ii) S. suis serotypes and STs associated with CNS infection are more diverse than previously reported, (iii) MALDI-TOF MS may need to be supplemented with additional diagnostic tools for precise S. suis identification, and (iv) VAGs remain an unreliable means for identifying isolates associated with CNS disease.IMPORTANCEStreptococcus suis is an important and complex systemic bacterial pathogen of swine. Characterization of S. suis strains originating from pigs with histologic confirmation of neurologic disease is limited. Review of swine diagnostic submissions revealed that fewer than half of cases from which S. suis was isolated from the brain had histologic evidence of neurologic disease. This finding demonstrates that clinical signs and site of isolation alone are not sufficient for identifying a neurologic disease-associated strain. Characterization of strains originating from cases with evidence of disease using classic and advanced diagnostic techniques revealed that neurologic disease-associated strains are diverse and commonly lack genes previously associated with virulence.
RESUMEN
A total of 360 pigs (DNA 600â ×â 241; initially 5.8 kg) were used in a 45-d growth study to evaluate the effects of adding 25(OH)D3 with 3 levels of standardized total tract digestible (STTD) P on nursery pig growth performance, bone and urine characteristics, and serum vitamin D. Pigs were weaned at 19 d of age and randomly allotted to 1 of 6 dietary treatments with 5 pigs per pen and 12 replications per treatment. Dietary treatments were arranged in a 2â ×â 3 factorial with main effects of 25(OH)D3 (0 or 50 µg/kg equivalent to 2,000 IU/kg of vitamin D3; Hy-D, dsm-firmenich, Plainsboro, NJ) and STTD P (70%, 100%, or 130% of the NRC [NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC) requirement estimate on a dietary percentage basis]. All diets contained 1,653 IU/kg of vitamin D3. On day 45, 1 pig per pen was euthanized to collect the right fibula, metacarpal, and 2nd and 10th ribs. Overall, increasing STTD P increased (quadratic, Pâ ≤â 0.003) ADG, ADFI, and G:F with minimal improvement above 100% of the NRC STTD P requirement estimate. Added 25(OH)D3 had no effect on growth performance. Increasing STTD P decreased urinary Ca concentration (linear, Pâ <â 0.001) and increased urinary P concentration (quadratic, Pâ <â 0.001). When pigs were fed added 25(OH)D3, serum 25(OH)D3 increased (quadratic, Pâ =â 0.005) as STTD P increased but no differences were observed when 25(OH)D3 was not added and STTD P increased (25(OH)D3 × STTD P interaction, Pâ =â 0.032). When pigs were fed 25(OH)D3, serum 1,25(OH)2D3 increased (quadratic, Pâ <â 0.001) as STTD P decreased but the increase was not significant when no 25(OH)D3 was fed (STTD Pâ ×â 25(OH)D3 interaction, Pâ =â 0.002). Bone ash percentage and weight increased (quadratic, Pâ ≤â 0.065) in all bones as STTD P increased. Added 25(OH)D3 had no effect on bone density or bone ash weight; however, the reduction in bone ash percentage observed with reducing STTD P level tended to be less when 25(OH)D3 was provided (linear interaction, Pâ =â 0.098). Increasing STTD P decreased the likelihood of abnormal histologic bone lesions in the 10th rib. In summary, added 25(OH)D3 had limited effect on growth performance; however, an increase in serum concentrations of 25(OH)D3 and 24,25(OH)2D3 was observed. The addition of 25(OH)D3 to P-deficient diets increased percentage bone ash. Increasing STTD P to 100% of NRC [NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC] requirement estimate increased growth and 130% of NRC maximized bone ash.
Vitamin D3 must be activated through a 2-step hydroxylation process to be metabolically active. Dietary addition of 25-hydroxyvitamin D3 [25(OH)D3] bypasses the hydroxylation step in the conversion of vitamin D3 to 25(OH)D3 in the liver and provides a greater concentration of 25(OH)D3 in circulation. The hypothesis of our experiment was that supplementing 25(OH)D3 to existing dietary levels of vitamin D3 would increase pig growth performance and bone development when added to diets deficient or marginally deficient in P. Overall, added 25(OH)D3 had limited effect on growth performance or urine parameters; however, added 25(OH)D3 increased serum concentrations of 25(OH)D3 and 24,25-dihydroxycholecalciferol [24,25(OH)2D3] and increased bone ash when added to diets deficient in P for bone mineralization (70 or 100% of the NRC (2012) standardized total tract digestible [STTD] P requirement estimate). Increasing STTD P to 100% of the NRC (2012) requirement estimate increased growth while 130% of NRC maximized bone ash.
Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Vitamina D , Animales , Dieta/veterinaria , Alimentación Animal/análisis , Porcinos/crecimiento & desarrollo , Porcinos/fisiología , Vitamina D/sangre , Vitamina D/administración & dosificación , Vitamina D/farmacología , Masculino , Fósforo/sangre , Femenino , Huesos/efectos de los fármacos , Huesos/metabolismo , Suplementos Dietéticos/análisis , Calcifediol/farmacología , Calcifediol/administración & dosificación , Calcifediol/sangre , Distribución Aleatoria , Fósforo Dietético/farmacología , Fósforo Dietético/administración & dosificación , Fósforo Dietético/metabolismoRESUMEN
Pigs from 64 commercial sites across 14 production systems in the Midwest United States were evaluated for baseline biological measurements used to determine bone mineralization. There were three pigs selected from each commercial site representing: 1) a clinically normal pig (healthy), 2) a pig with evidence of clinical lameness (lame), and 3) a pig from a hospital pen that was assumed to have recent low feed intake (unhealthy). Pigs ranged in age from nursery to market weight, with the three pigs sampled from each site representing the same age or phase of production. Blood, urine, metacarpal, fibula, 2nd rib, and 10th rib were collected and analyzed. Each bone was measured for density and ash (defatted and non-defatted technique). A boneâ ×â pig type interaction (Pâ <â 0.001) was observed for defatted and non-defatted bone ash and density. For defatted bone ash, there were no differences among pig types for the fibulas, 2nd rib, and 10th rib (Pâ >â 0.10), but metacarpals from healthy pigs had greater (Pâ <â 0.05) percentage bone ash compared to unhealthy pigs, with the lame pigs intermediate. For non-defatted bone ash, there were no differences among pig types for metacarpals and fibulas (Pâ >â 0.10), but unhealthy pigs had greater (Pâ <â 0.05) non-defatted percentage bone ash for 2nd and 10th ribs compared to healthy pigs, with lame pigs intermediate. Healthy and lame pigs had greater (Pâ <â 0.05) bone density than unhealthy pigs for metacarpals and fibulas, with no difference observed for ribs (Pâ >â 0.10). Healthy pigs had greater (Pâ <â 0.05) serum Ca and 25(OH)D3 compared to unhealthy pigs, with lame pigs intermediate. Healthy pigs had greater (Pâ <â 0.05) serum P compared to unhealthy and lame pigs, with no differences between the unhealthy and lame pigs. Unhealthy pigs excreted significantly more (Pâ <â 0.05) P and creatinine in the urine compared to healthy pigs with lame pigs intermediate. In summary, there are differences in serum Ca, P, and vitamin D among healthy, lame, and unhealthy pigs. Differences in bone mineralization among pig types varied depending on the analytical procedure and bone, with a considerable range in values within pig type across the 14 production systems sampled.
There is little literature or data comparing bone diagnostic results for healthy, lame, and unhealthy pigs. Typically, diagnosticians assessing clinical lameness cases in pigs will measure bone mineralization along with histopathological evaluation to diagnose and assess the severity of metabolic bone disease. Bone ash is the primary method to determine bone mineralization, with the removal of the lipid in the bone (defatting) before the bone is ashed, compared to not removing the lipid before the ashing (non-defatted). Defatting the bone reduces the amount of variation across the bones compared to non-defatting. In this diagnostic survey, there was no difference among the healthy, lame, or unhealthy pigs when comparing defatted bone ash, however, unhealthy pigs had an increased bone ash percentage compared to the healthy and lame pigs when the bones were assessed using the non-defatted procedure. There was variation across production systems and pig types for serum vitamin D. When comparing the pig types, healthy pigs had increased serum Ca, P, and vitamin D [25(OH)D3] compared to the unhealthy pigs, with the lame pigs intermediate.
Asunto(s)
Calcificación Fisiológica , Minerales , Porcinos , Animales , Densidad Ósea , Costillas , Alimentación Animal/análisis , DietaRESUMEN
A total of 882 pigs (PIC TR4â ×â [Fast LWâ ×â PIC L02]; initially 33.2â ±â 0.31 kg) were used in a 112-d study to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to changes in dietary P, phytase, and vitamin D in growing pigs. Pens of pigs (20 pigs per pen) were randomized to one of five dietary treatments with nine pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: 1) P at 80% of NRC (2012) standardized total tract digestible (STTD) P requirement, 2) NRC STTD P with no phytase, 3) NRC STTD P with phytase providing an assumed release of 0.14% STTD P from 2,000 FYT/kg, 4) high STTD P (128% of the NRC P) using monocalcium phosphate and phytase, and 5) diet 4 with additional vitamin D3 from 25(OH)D3. On day 112, one pig per pen was euthanized for bone, blood, and urine analysis. Additionally, 11 pigs identified as having poor body condition which indicated a history of low feed intake (unhealthy) were sampled. There were no differences between treatments for final body weight, average daily gain, average daily feed intake, gain to feed, or bone ash measurements (treatmentâ ×â bone interaction) regardless of bone ash method. The response to treatment for bone density and bone mineral content was dependent upon the bone sampled (density interaction, Pâ =â 0.053; mineral interaction, Pâ =â 0.078). For 10th rib bone density, pigs fed high levels of P had increased (Pâ <â 0.05) bone density compared with pigs fed NRC levels with phytase, with pigs fed deficient P, NRC levels of P with no phytase, and high STTD P with extra 25(OH)D3 intermediate, with no differences for metacarpals, fibulas, or 2nd ribs. Pigs fed extra vitamin D from 25(OH)D3 had increased (Pâ <â 0.05) 10th rib bone mineral content compared with pigs fed deficient P and NRC levels of P with phytase, with pigs fed industry P and vitamin D, and NRC P with monocalcium intermediate. Healthy pigs had greater (Pâ <â 0.05) serum Ca, P, vitamin D concentrations, and defatted bone ash than those unhealthy, with no difference between the two health statuses for non-defatted bone ash. In summary, differences between bone ash procedures were more apparent than differences between diets. Differences in bone density and mineral content in response to dietary P and vitamin D were most apparent with 10th ribs.
Lameness is defined as impaired movement or deviation from normal gait. The evaluation of bone mineralization can be an important component of a diagnostic investigation of lameness. Lameness in growing pigs can cause an increase in morbidity and mortality, which leads to economic losses and animal welfare concerns for producers. Calcium and P are the primary minerals in skeletal tissue and their deficiency is considered to be one of the causes of lameness. To evaluate bone mineralization, it is important to know the differences between methodologies used to determine bone ash and the expected differences between the bones analyzed. Furthermore, there has been limited data comparing bone mineralization and serum Ca and P concentrations between healthy pigs and those exhibiting clinical signs of illness (unhealthy). By removing the lipid in the bone (defatting) before the bone is ashed, variation across bones is decreased compared with not removing lipid before ashing (non-defatted). The reduction in variation across bones allows for more differences to be detected among dietary treatments and health statuses of pigs. The 10th rib is more sensitive to detect dietary differences using bone density than metacarpals, fibulas, and 2nd ribs. When comparing healthy vs. unhealthy pigs exhibiting clinical signs of illness, healthy pigs have increased defatted percentage bone ash and serum Ca, P, and vitamin D.
Asunto(s)
6-Fitasa , Alimentación Animal , Calcificación Fisiológica , Dieta , Fósforo Dietético , Vitamina D , Animales , 6-Fitasa/administración & dosificación , 6-Fitasa/farmacología , 6-Fitasa/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Porcinos/fisiología , Porcinos/crecimiento & desarrollo , Calcificación Fisiológica/efectos de los fármacos , Vitamina D/administración & dosificación , Vitamina D/sangre , Fósforo Dietético/metabolismo , Masculino , Fenómenos Fisiológicos Nutricionales de los Animales , Huesos/efectos de los fármacos , Huesos/metabolismo , Femenino , Suplementos Dietéticos/análisis , Densidad Ósea/efectos de los fármacos , Fósforo/metabolismo , Fósforo/sangre , Distribución AleatoriaRESUMEN
A total of 360 pigs (DNA 600â ×â 241, DNA; initially 11.9â ±â 0.56 kg) were used in a 28-d trial to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to dietary P, vitamin D, and phytase in nursery pigs. Pens of pigs (six pigs per pen) were randomized to six dietary treatments in a randomized complete block design with 10 pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: (1) 0.19% standardized total tract digestibility (STTD) P (deficient), (2) 0.33% STTD P (NRC [2012] requirement) using monocalcium phosphate, (3) 0.33% STTD P including 0.14% release from phytase (Ronozyme HiPhos 2700, DSM Nutritional Products, Parsippany, NJ), (4) 0.44% STTD P using monocalcium phosphate, phytase, and no vitamin D, (5) diet 4 with vitamin D (1,653 IU/kg), and (6) diet 5 with an additional 50 µg/kg of 25(OH)D3 (HyD, DSM Nutritional Products, Parsippany, NJ) estimated to provide an additional 2,000 IU/kg of vitamin D3. After 28 d on feed, eight pigs per treatment were euthanized for bone (metacarpal, 2nd rib, 10th rib, and fibula), blood, and urine analysis. The response to treatment for bone density and ash was dependent upon the bone analyzed (treatmentâ ×â bone interaction for bone density, Pâ =â 0.044; non-defatted bone ash, Pâ =â 0.060; defatted bone ash, Pâ =â 0.068). Thus, the response related to dietary treatment differed depending on which bone (metacarpal, fibula, 2nd rib, or 10th rib) was measured. Pigs fed 0.19% STTD P had decreased (Pâ <â 0.05) bone density and ash (non-defatted and defatted) for all bones compared to 0.44% STTD P, with 0.33% STTD P generally intermediate or similar to 0.44% STTD P. Pigs fed 0.44% STTD P with no vitamin D had greater (Pâ <â 0.05) non-defatted fibula ash compared to all treatments other than 0.44% STTD P with added 25(OH)D3. Pigs fed diets with 0.44% STTD P had greater (Pâ <â 0.05) defatted second rib ash compared to pigs fed 0.19% STTD P or 0.33% STTD P with no phytase. In summary, bone density and ash responses varied depending on bone analyzed. Differences in bone density and ash in response to P and vitamin D were most apparent with fibulas and second ribs. There were apparent differences in the bone ash percentage between defatted and non-defatted bone. However, differences between the treatments remain consistent regardless of the analytic procedure. For histopathology, 10th ribs were more sensitive than 2nd ribs or fibulas for the detection of lesions.
Lameness is defined as impaired movement or deviation from normal gait. There are many factors that can contribute to lameness, including but not limited to: infectious disease, genetic and conformational anomaly, and toxicity that affects the bone, muscle, and nervous systems. Metabolic bone disease is another cause of lameness in swine production and can be caused by inappropriate levels of essential vitamins or minerals. To understand and evaluate bone mineralization, it is important to understand the differences in diagnostic results between different bones and analytical techniques. Historically, percentage bone ash has been used as one of the procedures to assess metabolic bone disease as it measures the level of bone mineralization; however, procedures and results vary depending on the methodology and type of bone measured. Differences in bone density and ash in response to dietary P and vitamin D were most apparent in the fibulas and second ribs. There were apparent differences in the percentage of bone ash between defatted and non-defatted bone; however, the differences between the treatments remain consistent regardless of the analytic procedure. For histopathology, 10th ribs were more sensitive than 2nd ribs or fibulas for detection of lesions associated with metabolic bone disease.
Asunto(s)
6-Fitasa , Fósforo Dietético , Porcinos , Animales , Fósforo Dietético/farmacología , Calcificación Fisiológica , 6-Fitasa/farmacología , Vitamina D/farmacología , Tracto Gastrointestinal , Dieta/veterinaria , Vitaminas/farmacología , ADN/farmacología , Fosfatos/farmacología , Alimentación Animal/análisis , Fósforo , DigestiónRESUMEN
Bovine coronavirus (BCoV) is a known cause of enteric disease in cattle; however, its role in bovine respiratory disease (BRD) is poorly understood, with a dearth of evidence of the detection of the virus in respiratory tract lesions. We coupled histologic evaluation of tracheal and lower airway tissues from 104 calves with BRD in which BCoV was detected in the lungs via PCR followed by direct detection of BCoV by immunohistochemistry and an RNA in situ hybridization assay (ISH; RNAscope technology). RNAscope ISH detected BCoV in respiratory epithelium in more cases than did IHC. Using both methods of direct detection, tracheal epithelial attenuation and identification of the virus within lesions were observed commonly. Our results confirm a role of BCoV in respiratory tract infection and pathology, and show that the virus likely plays a role in the development of BRD.
Asunto(s)
Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Infecciones del Sistema Respiratorio , Animales , Bovinos , Infecciones por Coronavirus/veterinaria , Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/veterinariaRESUMEN
Two separate late-term abortion outbreaks in Jersey heifers in July 2020 and December 2020 were investigated by the Iowa State University Veterinary Diagnostic Laboratory. We evaluated 3 whole fetuses and 11 sets of fresh and formalin-fixed fetal tissues during the course of the outbreaks. The late-term abortions were first identified at a heifer development site and subsequently observed at the dairy farm. Aborted fetuses had moderate-to-marked postmortem autolysis with no gross lesions identified. Observed clinical signs in cows at the dairy farm ranged from intermittent loose stools to acute post-abortion pyrexia and reduced feed intake. Routine histopathology and reproductive bacterial culture revealed acute, suppurative placentitis with moderate-to-heavy growth of Salmonella spp. group B from stomach contents, liver, placenta, and heifer fecal contents. Serotyping identified Salmonella enterica subsp. enterica serovar Brandenburg in all 14 fresh tissue cases, as well as individual and pooled heifer feces. Whole-genome sequencing analysis revealed that all isolates belonged to ST type 873 and possessed typhoid toxin genes, several fimbrial gene clusters, type III secretion system genes, and several pathogenicity islands. Abortions caused by Salmonella Brandenburg have not been reported previously in dairy cattle in the United States, to our knowledge.
Asunto(s)
Enfermedades de los Bovinos , Salmonelosis Animal , Salmonella enterica , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Femenino , Humanos , Embarazo , Salmonella , Salmonelosis Animal/microbiología , SerogrupoRESUMEN
Case Description. A two-month-old, female, Aberdeen-Angus calf was presented for congenital cataracts and blindness in both eyes (OU). The dam had a reported history of visual defects (not specified) and had produced other affected calves (per owner history). Ophthalmic examination revealed mature bilateral cataracts, attenuation of the iridic granules, persistent pupillary membranes, and dyscoric pupils. Additionally, the calf had a poor body condition, prognathism, dome-shaped head, excessive nasal drainage, limb contracture, and fever. Histopathology of both eyes revealed lenticular degeneration (congenital cataracts), retinal dysplasia, and optic nerve hypoplasia. BVDV IHC detected antigen within only the left eye (OS), consisting of intrahistiocytic and endothelial immunoreactivity within the ciliary body, iris, and choroid. No BVDV immunoreactivity could be detected in the right eye (OD). This case highlights the unique ocular changes present in in utero BVDV infection of cattle with a different immunohistochemical staining profile than previously described.
RESUMEN
Porcine rabies is exceedingly rare worldwide. We describe herein the neuropathology and the diagnostic features of an outbreak of rabies in a litter of piglets attacked by a skunk in Georgia, United States. Rabies viral infection was confirmed in 2 of 3 piglets submitted for testing. Inflammatory and degenerative changes were more prominent in the brainstem and consisted of lymphoplasmacytic meningoencephalitis with glial nodules, neuronal necrosis, and neuronophagia. No viral inclusions (Negri bodies) were observed in multiple sections of brain. A fluorescent antibody test on fresh samples of brainstem and cerebellum was confirmatory for the eastern United States raccoon rabies virus variant. Immunoreactivity for rabies virus was detected across all brain sections in both cases but was more prominent in the thalamic and brainstem nuclei, as well as in the medial lemniscus. Rabies is an important differential diagnosis in pigs with neurologic disease.