Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proteomics ; : e2300494, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644344

RESUMEN

Microorganisms which are resistant to antibiotics are a global threat to the health of humans and animals. Wastewater treatment plants are known hotspots for the dissemination of antibiotic resistances. Therefore, novel methods for the inactivation of pathogens, and in particular antibiotic-resistant microorganisms (ARM), are of increasing interest. An especially promising method could be a water treatment by physical plasma which provides charged particles, electric fields, UV-radiation, and reactive species. The latter are foremost responsible for the antimicrobial properties of plasma. Thus, with plasma it might be possible to reduce the amount of ARM and to establish this technology as additional treatment stage for wastewater remediation. However, the impact of plasma on microorganisms beyond a mere inactivation was analyzed in more detail by a proteomic approach. Therefore, Escherichia coli GW-AmxH19, isolated from hospital wastewater in Germany, was used. The bacterial solution was treated by a plasma discharge ignited between each of four pins and the liquid surface. The growth of E. coli and the pH-value decreased during plasma treatment in comparison with the untreated control. Proteome and antibiotic resistance profile were analyzed. Concentrations of nitrite and nitrate were determined as long-lived indicative products of a transient chemistry associated with reactive nitrogen species (RNS). Conversely, hydrogen peroxide served as indicator for reactive oxygen species (ROS). Proteome analyses revealed an oxidative stress response as a result of plasma-generated RNS and ROS as well as a pH-balancing reaction as key responses to plasma treatment. Both, the generation of reactive species and a decreased pH-value is characteristic for plasma-treated solutions. The plasma-mediated changes of the proteome are discussed also in comparison with the Gram-positive bacterium Bacillus subtilis. Furthermore, no effect of the plasma treatment, on the antibiotic resistance of E. coli, was determined under the chosen conditions. The knowledge about the physiological changes of ARM in response to plasma is of fundamental interest to understand the molecular basis for the inactivation. This will be important for the further development and implementation of plasma in wastewater remediation.

2.
Chembiochem ; 24(24): e202300570, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37728121

RESUMEN

Fidaxomicin (Fdx) is a natural product antibiotic with potent activity against Clostridioides difficile and other Gram-positive bacteria such as Mycobacterium tuberculosis. Only a few Fdx derivatives have been synthesized and examined for their biological activity in the 50 years since its discovery. Fdx has a well-studied mechanism of action, namely inhibition of the bacterial RNA polymerase. Yet, the targeted organisms harbor different target protein sequences, which poses a challenge for the rational development of new semisynthetic Fdx derivatives. We introduced substituents on the two phenolic hydroxy groups of Fdx and evaluated the resulting trends in antibiotic activity against M. tuberculosis, C. difficile, and the Gram-negative model organism Caulobacter crescentus. As suggested by the target protein structures, we identified the preferable derivatisation site for each organism. The derivative ortho-methyl Fdx also exhibited activity against the Gram-negative C. crescentus wild type, a first for fidaxomicin antibiotics. These insights will guide the synthesis of next-generation fidaxomicin antibiotics.


Asunto(s)
Clostridioides difficile , Mycobacterium tuberculosis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina , Aminoglicósidos/farmacología , ARN Polimerasas Dirigidas por ADN
3.
Mol Cell Proteomics ; 17(5): 1035-1046, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29496906

RESUMEN

The strictly anaerobic bacterium C. difficile has become one of the most problematic hospital acquired pathogens and a major burden for health care systems. Although antibiotics work effectively in most C. difficile infections (CDIs), their detrimental effect on the intestinal microbiome paves the way for recurrent episodes of CDI. To develop alternative, non-antibiotics-based treatment strategies, deeper knowledge on the physiology of C. difficile, stress adaptation mechanisms and regulation of virulence factors is mandatory. The focus of this work was to tackle the thiol proteome of C. difficile and its stress-induced alterations, because recent research has reported that the amino acid cysteine plays a central role in the metabolism of this pathogen. We have developed a novel cysteine labeling approach to determine the redox state of protein thiols on a global scale. Applicability of this technique was demonstrated by inducing disulfide stress using the chemical diamide. The method can be transferred to any kind of redox challenge and was applied in this work to assess the effect of bile acids on the thiol proteome of C. difficile We present redox-quantification for more than 1,500 thiol peptides and discuss the general difficulty of redox analyses of peptides possessing more than a single cysteine residue. The presented method will be especially useful not only when determining redox status, but also for providing information on protein quantity. Additionally, our comprehensive data set reveals protein cysteine sites particularly susceptible to oxidation and builds a groundwork for redox proteomics studies in C. difficile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Compuestos de Sulfhidrilo/metabolismo , Alquilación , Secuencia de Aminoácidos , Cisteína/metabolismo , Disulfuros/metabolismo , Oxidación-Reducción , Péptidos/química , Péptidos/metabolismo
4.
Microb Cell Fact ; 18(1): 19, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696436

RESUMEN

BACKGROUND: The Twin-arginine translocation (Tat) pathway of Escherichia coli has great potential for the export of biopharmaceuticals to the periplasm due to its ability to transport folded proteins, and its proofreading mechanism that allows correctly folded proteins to translocate. Coupling the Tat-dependent protein secretion with the formation of disulfide bonds in the cytoplasm of E. coli CyDisCo provides a powerful platform for the production of industrially challenging proteins. In this study, we investigated the effects on the E. coli cells of exporting a folded substrate (scFv) to the periplasm using a Tat signal peptide, and the effects of expressing an export-incompetent misfolded variant. RESULTS: Cell growth is decreased when either the correctly folded or misfolded scFv is expressed with a Tat signal peptide. However, only the production of misfolded scFv leads to cell aggregation and formation of inclusion bodies. The comprehensive proteomic analysis revealed that both conditions, recombinant protein overexpression and misfolded protein accumulation, lead to downregulation of membrane transporters responsible for protein folding and insertion into the membrane while upregulating the production of chaperones and proteases involved in removing aggregates. These conditions also differentially affect the production of transcription factors and proteins involved in DNA replication. The most distinct stress response observed was the cell aggregation caused by elevated levels of antigen 43. Finally, Tat-dependent secretion causes an increase in tatA expression only after induction of protein expression, while the subsequent post-induction analysis revealed lower tatA and tatB expression levels, which correlate with lowered TatA and TatB protein abundance. CONCLUSIONS: The study identified characteristic changes occurring as a result of the production of both a folded and a misfolded protein, but also highlights an exclusive unfolded stress response. Countering and compensating for these changes may result in higher yields of pharmaceutically relevant proteins exported to the periplasm.


Asunto(s)
Escherichia coli/genética , Estrés Oxidativo , Pliegue de Proteína , Proteoma , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteómica , Proteínas Recombinantes de Fusión/química , Anticuerpos de Cadena Única/química
5.
Anaerobe ; 53: 94-107, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29859941

RESUMEN

Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype.


Asunto(s)
Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Perfilación de la Expresión Génica , Estrés Oxidativo , Oxígeno/toxicidad , Aerobiosis , Anaerobiosis , Clostridioides difficile/crecimiento & desarrollo , Genómica , Redes y Vías Metabólicas/genética , Proteómica
6.
Nucleic Acids Res ; 42(14): 9383-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034691

RESUMEN

The multicopy sRNA LhrC of the intracellular pathogen Listeria monocytogenes has been shown to be induced under infection-relevant conditions, but its physiological role and mechanism of action is not understood. In an attempt to pinpoint the exact terms of LhrC expression, cell envelope stress could be defined as a specific inducer of LhrC. In this process, the two-component system LisRK was shown to be indispensable for expression of all five copies of LhrC. lapB mRNA, encoding a cell wall associated protein that was recently identified as an important virulence factor, was disclosed to be directly bound by LhrC leading to an impediment of its translation. Although LhrC binds to Hfq, it does not require the RNA chaperone for stability or lapB mRNA interaction. The mechanism of LhrC-lapB mRNA binding was shown to involve three redundant CU-rich sites and a structural rearrangement in the sRNA. This study represents an extensive depiction of a so far uncharacterized multicopy sRNA and reveals interesting new aspects concerning its regulation, virulence association and mechanism of target binding.


Asunto(s)
Adhesinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Adhesinas Bacterianas/metabolismo , Dosificación de Gen , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , ARN Bacteriano/genética , ARN Bacteriano/fisiología , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , Estrés Fisiológico , Virulencia/genética
7.
Proteomics ; 15(15): 2629-33, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25867794

RESUMEN

Bacillus licheniformis is an important host for the industrial production of enzymes mainly because of its ability to secrete large amounts of protein. We analyzed the proteome of B. licheniformis cells growing in a minimal medium. Beside the cytosolic proteome, the membrane and the extracellular proteome were studied. We could identify 1470 proteins; 1168 proteins were classified as cytosolic proteins, 195 proteins with membrane-spanning domains were classified as membrane proteins, and 107 proteins, with either putative signals peptides or flagellin-like sequences, were classified as secreted proteins. The identified proteins were grouped into functional categories and used to reconstruct cellular functions and metabolic pathways of growing B. licheniformis cells. The largest group was proteins with functions in basic metabolic pathways such as carbon metabolism, amino acid and nucleotide synthesis and synthesis of fatty acids and cofactors. Many proteins detected were involved in DNA replication, transcription, and translation. Furthermore, a high number of proteins employed in the transport of a wide variety of compounds were found to be expressed in the cells. All MS data have been deposited in the ProteomeXchange with identifier PXD000791 (http://proteomecentral.proteomexchange.org/dataset/PXD000791).


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/análisis , Proteoma/análisis , Proteómica/métodos , Bacillus/efectos de los fármacos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Fenómenos Fisiológicos Celulares , Medios de Cultivo/farmacología , Citosol/metabolismo , Electroforesis en Gel Bidimensional , Metabolismo Energético , Lipoproteínas/análisis , Lipoproteínas/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas , Proteoma/clasificación , Proteoma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
RNA Biol ; 12(9): 985-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26176322

RESUMEN

Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Lipoproteínas/genética , Listeria monocytogenes/genética , ARN Pequeño no Traducido/genética , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/metabolismo , Perfilación de la Expresión Génica , Lipoproteínas/metabolismo , Listeria monocytogenes/metabolismo , Macrófagos/microbiología , Ratones , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Operón , Proteoma , Proteómica/métodos , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Estrés Fisiológico/genética , Transcriptoma
9.
JACS Au ; 4(6): 2267-2280, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38938792

RESUMEN

Fidaxomicin (Fdx) constitutes a glycosylated natural product with excellent antibacterial activity against various Gram-positive bacteria but is approved only for Clostridioides difficile infections. Poor water solubility and acid lability preclude its use for other infections. Herein, we describe our strategy to overcome the acid lability by introducing acid-stable S-linked glycosides. We describe the direct, diastereoselective modification of unprotected Fdx without the need to avoid air or moisture. Using our newly established approach, Fdx was converted to the single atom exchanged analogue S-Fdx, in which the acid labile O-glycosidic bond to the noviose sugar was replaced by the acid stable S-glycosidic bond. Studies of the antibacterial activity of a structurally diverse set of thioglycoside derivatives revealed high potency of acyl derivatives of S-Fdx against Clostridioides difficile (MIC range: 0.12-4 µg/mL) and excellent potency against Clostridium perfringens (MIC range: 0.06-0.5 µg/mL).

10.
Microbiol Spectr ; 12(3): e0189523, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38319052

RESUMEN

Clostridioides difficile infections have become a major challenge in medical facilities. The bacterium is capable of spore formation allowing the survival of antibiotic treatment. Therefore, research on the physiology of C. difficile is important for the development of alternative treatment strategies. In this study, we investigated eight putative flavodoxins of C. difficile 630. Flavodoxins are small electron transfer proteins of specifically low potential. The unusually high number of flavodoxins in C. difficile suggests that they are expressed under different conditions. We determined high transcription levels for several flavodoxins during the exponential growth phase, especially for floX. Since flavodoxins are capable of replacing ferredoxins under iron deficiency conditions in other bacteria, we also examined their expression in C. difficile under low iron and no iron levels. In particular, the amount of fldX increased with decreasing iron concentration and thus could possibly replace ferredoxins. Moreover, we demonstrated that fldX is increasingly expressed under different oxidative stress conditions and thus may play an important role in the oxidative stress response. While increased fldX expression was detectable at both RNA and protein level, CD2825 showed increased expression only at mRNA level under H2O2 stress with sufficient iron availability and may indicate hydroxyl radical-dependent transcription. Although the exact function of the individual flavodoxins in C. difficile needs to be further investigated, the present study shows that flavodoxins could play an important role in several physiological processes and under infection-relevant conditions. IMPORTANCE: The gram-positive, anaerobic, and spore-forming bacterium Clostridioides difficile has become a vast problem in human health care facilities. The antibiotic-associated infection with this intestinal pathogen causes serious and recurrent inflammation of the intestinal epithelium, in many cases with a severe course. To come up with novel targeted therapies against C. difficile infections, a more detailed knowledge on the pathogen's physiology is mandatory. Eight putative flavodoxins, an extraordinarily high copy number of this type of small electron transfer proteins, are annotated for C. difficile. Flavodoxins are known to be essential electron carriers in other bacteria, for instance, during infection-relevant conditions such as iron limitation and oxidative stress. This work is a first and comprehensive overview on characteristics and expression profiles of the putative flavodoxins in the pathogen C. difficile.


Asunto(s)
Clostridioides difficile , Flavodoxina , Humanos , Flavodoxina/metabolismo , Clostridioides difficile/genética , Clostridioides , Ferredoxinas , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Hierro/metabolismo
11.
Nat Commun ; 15(1): 1674, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395951

RESUMEN

The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Acetilación , NAD/metabolismo , Expresión Génica , Fosfatos/metabolismo
12.
Cell Host Microbe ; 31(5): 734-750.e8, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098342

RESUMEN

Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Porcinos , Vancomicina/farmacología , Vancomicina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/prevención & control
13.
Gut Pathog ; 14(1): 4, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991700

RESUMEN

The anaerobic, gastrointestinal pathogen Clostridioides difficile can cause severe forms of enterocolitis which is mainly mediated by the toxins it produces. The RNA polymerase inhibitor Fidaxomicin is the current gold standard for the therapy of C. difficile infections due to several beneficial features including its ability to suppress toxin synthesis in C. difficile. In contrast to the Rifamycins, Fidaxomicin binds to the RNA polymerase switch region, which is also the binding site for Myxopyronin B. Here, serial broth dilution assays were performed to test the susceptibility of C. difficile and other anaerobes to Myxopyronin B, proving that the natural product is considerably active against C. difficile and that there is no cross-resistance between Fidaxomicin and Myxopyronin B in a Fidaxomicin-resistant C. difficile strain. Moreover, mass spectrometry analysis indicated that Myxopyronin B is able to suppress early phase toxin synthesis in C. difficile to the same degree as Fidaxomicin. Conclusively, Myxopyronin B is proposed as a new lead structure for the design of novel antibiotics for the therapy of C. difficile infections.

14.
Front Microbiol ; 13: 814692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401433

RESUMEN

The anaerobic bacterium Clostridioides difficile represents one of the most problematic pathogens, especially in hospitals. Dysbiosis has been proven to largely reduce colonization resistance against this intestinal pathogen. The beneficial effect of the microbiota is closely associated with the metabolic activity of intestinal microbes such as the ability to transform primary bile acids into secondary ones. However, the basis and the molecular action of bile acids (BAs) on the pathogen are not well understood. We stressed the pathogen with the four most abundant human bile acids: cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and lithocholic acid (LCA). Thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM), and electron microscopy (EM) were employed to track the enrichment and destination of bile acids in the bacterial cell. TLC not only revealed a strong accumulation of LCA in C. difficile, but also indicated changes in the composition of membrane lipids in BA-treated cells. Furthermore, morphological changes induced by BAs were determined, most pronounced in the virtually complete loss of flagella in LCA-stressed cells and a flagella reduction after DCA and CDCA challenge. Quantification of both, protein and RNA of the main flagella component FliC proved the decrease in flagella to originate from a change in gene expression on transcriptional level. Notably, the loss of flagella provoked by LCA did not reduce adhesion ability of C. difficile to Caco-2 cells. Most remarkably, extracellular toxin A levels in the presence of BAs showed a similar pattern as flagella expression. That is, CA did not affect toxin expression, whereas lower secretion of toxin A was determined in cells stressed with LCA, DCA or CDCA. In summary, the various BAs were shown to differentially modify virulence determinants, such as flagella expression, host cell adhesion and toxin synthesis. Our results indicate differences of BAs in cellular localization and impact on membrane composition, which could be a reason of their diverse effects. This study is a starting point in the elucidation of the molecular mechanisms underlying the differences in BA action, which in turn can be vital regarding the outcome of a C. difficile infection.

15.
mSphere ; 7(5): e0030222, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993700

RESUMEN

Amidochelocardin is a broad-spectrum antibiotic with activity against many Gram-positive and Gram-negative bacteria. According to recent data, the antibiotic effect of this atypical tetracycline is directed against the cytoplasmic membrane, which is associated with the dissipation of the membrane potential. Here, we investigated the effect of amidochelocardin on the proteome of Clostridioides difficile to gain insight into the membrane stress physiology of this important anaerobic pathogen. For the first time, the membrane-directed action of amidochelocardin was confirmed in an anaerobic pathogen. More importantly, our results revealed that aromatic compounds potentially play an important role in C. difficile upon dissipation of its membrane potential. More precisely, a simultaneously increased production of enzymes required for the synthesis of chorismate and two putative phenazine biosynthesis proteins point to the production of a hitherto unknown compound in response to membrane depolarization. Finally, increased levels of the ClnAB efflux system and its transcriptional regulator ClnR were found, which were previously found in response to cationic antimicrobial peptides like LL-37. Therefore, our data provide a starting point for a more detailed understanding of C. difficile's way to counteract membrane-active compounds. IMPORTANCE C. difficile is an important anaerobe pathogen causing mild to severe infections of the gastrointestinal tract. To avoid relapse of the infection following antibiotic therapy, antibiotics are needed that efficiently eradicate C. difficile from the intestinal tract. Since C. difficile was shown to be substantially sensitive to membrane-active antibiotics, it has been proposed that membrane-active antibiotics might be promising for the therapy of C. difficile infections. Therefore, we studied the response of C. difficile to amidochelocardin, a membrane-active antibiotic dissipating the membrane potential. Interestingly, C. difficile's response to amidochelocardin indicates a role of aromatic metabolites in mediating stress caused by dissipation of the membrane potential.


Asunto(s)
Clostridioides difficile , Clostridioides , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Proteoma , Tetraciclinas/farmacología , Fenazinas/farmacología
16.
Anal Chem ; 83(7): 2677-84, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21395229

RESUMEN

Knowledge on absolute protein concentrations is mandatory for the simulation of biological processes in the context of systems biology. A novel approach for the absolute quantification of proteins at a global scale has been developed and its applicability demonstrated using glucose starvation of the Gram-positive model bacterium Bacillus subtilis and the pathogen Staphylococcus aureus as proof-of-principle examples. Absolute intracellular protein concentrations were initially determined for a preselected set of anchor proteins by employing a targeted mass spectrometric method and isotopically labeled internal standard peptides. Known concentrations of these anchor proteins were then used to calibrate two-dimensional (2-D) gels allowing the calculation of absolute abundance of all detectable proteins on the 2-D gels. Using this approach, concentrations of the majority of metabolic enzymes were determined, and thus a quantification of the players of metabolism was achieved. This new strategy is fast, cost-effective, applicable to any cell type, and thus of value for a broad community of laboratories with experience in 2-D gel-based proteomics and interest in quantitative approaches. Particularly, this approach could also be utilized to quantify existing data sets with the aid of a few standard anchor proteins.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Espectrometría de Masas/métodos , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Proteómica/métodos , Integración de Sistemas , Animales , Bacillus subtilis/citología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Bovinos , Humanos , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo
17.
Curr Protoc ; 1(11): e277, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34748287

RESUMEN

Proteins can be lysine-acetylated both enzymatically, by lysine acetyltransferases (KATs), and non-enzymatically, by acetyl-CoA and/or acetyl-phosphate. Such modification can be reversed by lysine deacetylases classified as NAD+ -dependent sirtuins or by classical Zn2+ -dependent deacetylases (KDACs). The regulation of protein lysine acetylation events by KATs and sirtuins/KDACs, or by non-enzymatic processes, is often assessed only indirectly by mass spectrometry or by mutational studies in cells. Mutational approaches to study lysine acetylation are limited, as these often poorly mimic lysine acetylation. Here, we describe protocols to assess the direct regulation of protein lysine acetylation by both sirtuins/KDACs and KATs, as well as non-enzymatically. We first describe a protocol for the production of site-specific lysine-acetylated proteins using a synthetic biological approach, the genetic code expansion concept (GCEC). These natively folded, lysine-acetylated proteins can then be used as direct substrates for sirtuins and KDACs. This approach addresses various limitations encountered with other methods. First, results from sirtuin/KDAC-catalyzed deacetylation assays obtained using acetylated peptides as substrates can vary considerably compared to experiments using natively folded substrate proteins. In addition, producing lysine-acetylated proteins for deacetylation assays by using recombinantly expressed KATs is difficult, as these often do not yield proteins that are homogeneously and quantitatively lysine acetylated. Moreover, KATs are often huge multi-domain proteins, which are difficult to recombinantly express and purify in soluble form. We also describe protocols to study the direct regulation of protein lysine acetylation, both enzymatically, by sirtuins/KDACs and KATs, and non-enzymatically, by acetyl-CoA and/or acetyl-phosphate. The latter protocol also includes a section that explains how specific lysine acetylation sites can be detected by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The protocols described here can be useful for providing a more detailed understanding of the enzymatic and non-enzymatic regulation of lysine acetylation sites, an important aspect to judge their physiological significance. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of N-(ε)-lysine-acetylated proteins using the genetic code expansion concept (GCEC) Basic Protocol 2: In vitro sirtuin (SIRT)-catalyzed deacetylation of lysine-acetylated proteins prepared by the GCEC Basic Protocol 3: In vitro KDAC/HDAC-catalyzed deacetylation of lysine-acetylated proteins Basic Protocol 4: In vitro lysine acetylation of recombinantly expressed proteins by lysine acetyltransferases (KATs) Basic Protocol 5: In vitro non-enzymatic lysine acetylation of proteins by acetyl-CoA and/or acetyl-phosphate.


Asunto(s)
Lisina Acetiltransferasas , Lisina , Acetilación , Cromatografía Liquida , Lisina/metabolismo , Lisina Acetiltransferasas/metabolismo , Espectrometría de Masas en Tándem
18.
Front Microbiol ; 12: 682111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177868

RESUMEN

The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile's V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.

19.
mSphere ; 6(2)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658275

RESUMEN

The human pathogen Clostridioides difficile has evolved into the leading cause of nosocomial diarrhea. The bacterium is capable of spore formation, which even allows survival of antibiotic treatment. Although C. difficile features an anaerobic lifestyle, we determined a remarkably high oxygen tolerance of the laboratory reference strain 630Δerm A mutation of a single nucleotide (single nucleotide polymorphism [SNP]) in the DNA sequence (A to G) of the gene encoding the regulatory protein PerR results in an amino acid substitution (Thr to Ala) in one of the helices of the helix-turn-helix DNA binding domain of this transcriptional repressor in C. difficile 630Δerm PerR is a sensor protein for hydrogen peroxide and controls the expression of genes involved in the oxidative stress response. We show that PerR of C. difficile 630Δerm has lost its ability to bind the promoter region of PerR-controlled genes. This results in a constitutive derepression of genes encoding oxidative stress proteins such as a rubrerythrin (rbr1) whose mRNA abundance under anaerobic conditions was increased by a factor of about 7 compared to its parental strain C. difficile 630. Rubrerythrin repression in strain 630Δerm could be restored by the introduction of PerR from strain 630. The permanent oxidative stress response of C. difficile 630Δerm observed here should be considered in physiological and pathophysiological investigations based on this widely used model strain.IMPORTANCE The intestinal pathogen Clostridioides difficile is one of the major challenges in medical facilities nowadays. In order to better combat the bacterium, detailed knowledge of its physiology is mandatory. C. difficile strain 630Δerm was generated in a laboratory from the patient-isolated strain C. difficile 630 and represents a reference strain for many researchers in the field, serving as the basis for the construction of insertional gene knockout mutants. In our work, we demonstrate that this strain is characterized by an uncontrolled oxidative stress response as a result of a single-base-pair substitution in the sequence of a transcriptional regulator. C. difficile researchers working with model strain 630Δerm should be aware of this permanent stress response.


Asunto(s)
Clostridioides difficile/genética , Estrés Oxidativo/genética , Mutación Puntual , Proteínas Represoras/genética , Factores de Transcripción/genética , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Virulencia/genética
20.
Proteomics ; 10(8): 1685-93, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20162562

RESUMEN

The dynamic lipid composition of bacterial cytoplasmic membranes has a profound impact on vital bacterial fitness and susceptibility to membrane-damaging agents, temperature, or osmotic stress. However, it has remained largely unknown how changes in lipid patterns affect the abundance and expression of membrane proteins. Using recently developed gel-free proteomics technology, we explored the membrane proteome of the important human pathogen Staphylococcus aureus in the presence or absence of the cationic phospholipid lysyl-phosphatidylglycerol (Lys-PG). We were able to detect almost half of all theoretical integral membrane proteins and could reliably quantify more than 35% of them. It is worth noting that the deletion of the Lys-PG synthase MprF did not lead to a massive alteration but a very distinct up- or down-regulation of only 1.5 or 3.5% of the quantified proteins. Lys-PG deficiency had no major impact on the abundance of lipid-biosynthetic enzymes but significantly affected the amounts of the cell envelope stress-sensing regulatory proteins such as SaeS and MsrR, and of the SaeS-regulated proteins Sbi, Efb, and SaeP. These data indicate very critical interactions of membrane-sensory proteins with phospholipids and they demonstrate the power of membrane proteomics for the characterization of bacterial physiology and pathogenicity.


Asunto(s)
Proteínas Bacterianas/análisis , Membrana Celular/química , Proteínas de la Membrana/análisis , Fosfolípidos/análisis , Proteoma/análisis , Staphylococcus aureus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA