Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 98(3): 1627-1738, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873596

RESUMEN

The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.


Asunto(s)
Angiotensina II/metabolismo , Receptores de Angiotensina/metabolismo , Transducción de Señal , Adipocitos/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Cardiopatías/metabolismo , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo
2.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145289

RESUMEN

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Asunto(s)
Proteína Relacionada con Agouti , Factor 4 Similar a Kruppel , Neuronas , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38991008

RESUMEN

Fate mapping and genetic manipulation of renin cells have relied on either non-inducible Cre lines that can introduce developmental effects of gene deletion or BAC transgene-based inducible models that may be prone to spurious and/or ectopic gene expression. To circumvent these problems, we generated an inducible mouse model in which CreERT2 is under the control of the endogenous Akr1b7 gene, an independent marker of renin cells that is expressed in a few extrarenal tissues. We confirmed the proper expression of Cre using Akr1b7CreERT2/+;R26RmTmG/+ mice in which Akr1b7+/renin+ cells become GFP+ upon tamoxifen administration. In embryos and neonates, GFP was found in Juxtaglomerular cells, along the arterioles, and in the mesangium, and in adults, GFP was present mainly in Juxtaglomerular cells. In mice treated with captopril and a low salt diet to induce recruitment of renin cells, GFP extended along the afferent arterioles and in the mesangium. We generated Akr1b7CreERT2/+;Ren1cFl/-;R26RmTmG/+ mice to conditionally delete renin in adult mice and found a marked reduction in kidney renin mRNA and protein, and mean arterial pressure in mutant animals. When subjected to a homeostatic threat, mutant mice were unable to recruit renin+ cells. Most importantly, these mice developed concentric vascular hypertrophy ruling out potential developmental effects on the vasculature due to the lack of renin. We conclude that Akr1b7CreERT2 mice constitute an excellent model for the fate mapping of renin cells and for the spatial and temporal control of gene expression in renin cells.

4.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R242-R253, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284128

RESUMEN

The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.


Asunto(s)
Fitoestrógenos , Cloruro de Sodio , Ratones , Femenino , Animales , Fitoestrógenos/farmacología , Ratones Endogámicos C57BL , Ciclo Estral , Dieta , Metabolismo Energético , Sodio , Agua
5.
Am J Physiol Heart Circ Physiol ; 325(4): H882-H887, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624099

RESUMEN

At the American Physiology Summit 2023 session entitled, "Mental Health for Graduate Students," numerous students expressed struggling with poor mental well-being primarily because of negative experiences during their graduate training. In fact, studies show that up to 50% of graduate students report symptoms of depression, anxiety, or burnout during their training, and poor mental well-being is a major contributor to students' decision to leave academia. Most of the current solutions focus on treatment or wellness strategies; while these are important and necessary, the training environment or culture that often contributes to worsening well-being continues to persist. In this collaborative article between trainees and mentors across various career stages, we discuss how the pace of scientific advancements and the associated competition, lack of sufficient support for students from diverse backgrounds, and mentor-mentee relationships crucially influence graduate students' mental well-being. We then offer specific solutions at the individual, institutional, and national levels that can serve as a starting point for improving graduate students' mental health and overall training experience.


Asunto(s)
Salud Mental , Bienestar Psicológico , Humanos , Estudiantes
6.
Circ Res ; 128(7): 1021-1039, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793338

RESUMEN

Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.


Asunto(s)
Presión Sanguínea/fisiología , Hipertensión/genética , Receptores Activados del Proliferador del Peroxisoma/fisiología , Animales , Encéfalo/metabolismo , Femenino , Humanos , Sistema Inmunológico/fisiología , Riñón/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/fisiología , Receptores Activados del Proliferador del Peroxisoma/genética , Placenta , Preeclampsia/etiología , Embarazo , Ratas , Investigación , Factores de Transcripción/fisiología
7.
Physiol Genomics ; 54(6): 196-205, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476598

RESUMEN

The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.


Asunto(s)
Angiotensina II , Metabolismo Energético , Leptina , Receptor de Melanocortina Tipo 4 , Proteína Relacionada con Agouti/metabolismo , Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Leptina/metabolismo , Leptina/farmacología , Melanocortinas/metabolismo , Melanocortinas/farmacología , Ratones , Receptor de Melanocortina Tipo 4/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R467-R485, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348007

RESUMEN

Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Animales , Acuaporina 2 , Presión Sanguínea/fisiología , Desoxicorticosterona/farmacología , Acetato de Desoxicorticosterona/farmacología , Dieta , Hipertensión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Renina/metabolismo , Sodio/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R410-R421, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816717

RESUMEN

The renin-angiotensin system (RAS) within the brain is implicated in the control of fluid and electrolyte balance, autonomic functions, blood pressure, and energy expenditure. Mouse models are increasingly used to explore these mechanisms; however, sex and dose dependencies of effects elicited by chronic intracerebroventricular (ICV) angiotensin II (ANG II) infusion have not been carefully established in this species. To examine the interactions among sex, body mass, and ICV ANG II on ingestive behaviors and energy balance, young adult C57BL/6J mice of both sexes were studied in a multiplexed metabolic phenotyping system (Promethion) during chronic infusion of ANG II (0, 5, 20, or 50 ng/h). At these infusion rates, ANG II caused accelerating dose-dependent increases in drinking and total energy expenditure in male mice, but female mice exhibited a complex biphasic response with maximum responses at 5 ng/h. Body mass differences did not account for sex-dependent differences in drinking behavior or total energy expenditure. In contrast, resting metabolic rate was similarly increased by ICV ANG II in a dose-dependent manner in both sexes after correction for body mass. We conclude that chronic ICV ANG II stimulates water intake, resting, and total energy expenditure in male C57BL/6J mice following straightforward accelerating dose-dependent kinetics, but female C57BL/6J mice exhibit complex biphasic responses to ICV ANG II. Furthermore, control of resting metabolic rate by ANG II is dissociable from mechanisms controlling fluid intake and total energy expenditure. Future studies of the sex dependency of ANG II within the brain of mice must be designed to carefully consider the biphasic responses that occur in females.


Asunto(s)
Angiotensina II , Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Femenino , Homeostasis , Infusiones Intraventriculares , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL
10.
J Cell Sci ; 132(21)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31636116

RESUMEN

Cyclin E and its binding partner Cdk2 control the G1/S transition in mammalian cells. Increased levels of cyclin E are found in some cancers. Additionally, proteolytic removal of the cyclin E N-terminus occurs in some cancers and is associated with increased cyclin E-Cdk2 activity and poor clinical prognosis. Cyclin E levels are tightly regulated and controlled in part through ubiquitin-mediated degradation initiated by one of two E3 ligases, Cul1 and Cul3. Cul1 ubiquitylates phosphorylated cyclin E, but the mechanism through which Cul3 ubiquitylates cyclin E is poorly understood. In experiments to ascertain how Cul3 mediates cyclin E destruction, we identified a degron on cyclin E that Cul3 targets for ubiquitylation. Recognition of the degron and binding of Cul3 does not require a BTB domain-containing adaptor protein. Additionally, this degron is lacking in N-terminally truncated cyclin E. Our results describe a mechanism whereby N-terminally truncated cyclin E can avoid the Cul3-mediated degradation pathway. This mechanism helps to explain the increased activity that is associated with the truncated cyclin E variants that occurs in some cancers.


Asunto(s)
Proteínas Cullin/metabolismo , Ciclina E/metabolismo , Proteínas Oncogénicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Humanos , Unión Proteica , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
11.
Curr Opin Nephrol Hypertens ; 29(2): 161-170, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31789920

RESUMEN

PURPOSE OF REVIEW: This review provides an up-to-date understanding of how peroxisome proliferator activated receptor γ (PPARγ) exerts its cardioprotective effect in the vasculature through its activation of novel PPARγ target genes in endothelium and vascular smooth muscle. RECENT FINDINGS: In vascular endothelial cells, PPARγ plays a protective role by increasing nitric oxide bioavailability and preventing oxidative stress. RBP7 is a PPARγ target gene enriched in vascular endothelial cells, which is likely to form a positive feedback loop with PPARγ. In vascular smooth muscle cells, PPARγ antagonizes the renin-angiotensin system, maintains vascular integrity, suppresses vasoconstriction, and promotes vasodilation through distinct pathways. Rho-related BTB domain containing protein 1 (RhoBTB1) is a novel PPARγ gene target in vascular smooth muscle cells that mediates the protective effect of PPARγ by serving as a substrate adaptor between the Cullin-3 RING ubiquitin ligase and phosphodiesterase 5, thus restraining its activity through ubiquitination and proteasomal degradation. SUMMARY: In the vasculature, PPARγ exerts its cardioprotective effect through its transcriptional activity in endothelium and vascular smooth muscle. From the understanding of PPARγ's transcription targets in those pathways, novel hypertension therapy target(s) will emerge.


Asunto(s)
Hipertensión/etiología , PPAR gamma/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Células Endoteliales/fisiología , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología
12.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R855-R869, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186897

RESUMEN

Angiotensin II (ANG II) Agtr1a receptor (AT1A) is expressed in cells of the arcuate nucleus of the hypothalamus that express the leptin receptor (Lepr) and agouti-related peptide (Agrp). Agtr1a expression in these cells is required to stimulate resting energy expenditure in response to leptin and high-fat diets (HFDs), but the mechanism activating AT1A signaling by leptin remains unclear. To probe the role of local paracrine/autocrine ANG II generation and signaling in this mechanism, we bred mice harboring a conditional allele for angiotensinogen (Agt, encoding AGT) with mice expressing Cre-recombinase via the Lepr or Agrp promoters to cause cell-specific deletions of Agt (AgtLepr-KO and AgtAgrp-KO mice, respectively). AgtLepr-KO mice were phenotypically normal, arguing against a paracrine/autocrine AGT signaling mechanism for metabolic control. In contrast, AgtAgrp-KO mice exhibited reduced preweaning survival, and surviving adults exhibited altered renal structure and steroid flux, paralleling previous reports of animals with whole body Agt deficiency or Agt disruption in albumin (Alb)-expressing cells (thought to cause liver-specific disruption). Surprisingly, adult AgtAgrp-KO mice exhibited normal circulating AGT protein and hepatic Agt mRNA expression but reduced Agt mRNA expression in adrenal glands. Reanalysis of RNA-sequencing data sets describing transcriptomes of normal adrenal glands suggests that Agrp and Alb are both expressed in this tissue, and fluorescent reporter gene expression confirms Cre activity in adrenal gland of both Agrp-Cre and Alb-Cre mice. These findings lead to the iconoclastic conclusion that extrahepatic (i.e., adrenal) expression of Agt is critically required for normal renal development and survival.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Proteína Relacionada con Agouti/metabolismo , Angiotensinógeno/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético , Riñón/metabolismo , Receptores de Leptina/metabolismo , Glándulas Suprarrenales/crecimiento & desarrollo , Proteína Relacionada con Agouti/deficiencia , Proteína Relacionada con Agouti/genética , Angiotensinógeno/deficiencia , Angiotensinógeno/genética , Animales , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Comunicación Autocrina , Femenino , Regulación del Desarrollo de la Expresión Génica , Riñón/crecimiento & desarrollo , Masculino , Ratones Noqueados , Miocardio/metabolismo , Comunicación Paracrina , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Transducción de Señal
13.
Curr Hypertens Rep ; 22(9): 61, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32852625

RESUMEN

PURPOSE OF REVIEW: The goal of this review is to evaluate recent advances in understanding the pivotal roles of Cullin-3 (CUL3) in blood pressure regulation with a focus on its actions in the kidney and blood vessels. RECENT FINDINGS: Cul3-based ubiquitin ligase regulates renal electrolyte transport, vascular tone, and redox homeostasis by facilitating the normal turnover of (1) with-no-lysine kinases in the distal nephron, (2) RhoA and phosphodiesterase 5 in the vascular smooth muscle, and (3) nuclear factor E2-related factor 2 in antioxidant responses. CUL3 mutations identified in familial hyperkalemic hypertension (FHHt) yield a mutant protein lacking exon 9 (CUL3∆9) which displays dual gain and loss of function. CUL3∆9 acts in a dominant manner to impair CUL3-mediated substrate ubiquitylation and degradation. The consequent accumulation of substrates and overactivation of downstream signaling cause FHHt through increased sodium reabsorption, enhanced vasoconstriction, and decreased vasodilation. CUL3 ubiquitin ligase maintains normal cardiovascular and renal physiology through posttranslational modification of key substrates which regulate blood pressure. Interference with CUL3 disturbs these key downstream pathways. Further understanding the spatial and temporal specificity of how CUL3 functions in these pathways is necessary to identify novel therapeutic targets for hypertension.


Asunto(s)
Proteínas Cullin , Hipertensión , Presión Sanguínea , Humanos , Riñón , Proteínas Serina-Treonina Quinasas
14.
Curr Hypertens Rep ; 22(1): 7, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925571

RESUMEN

PURPOSE OF THE REVIEW: The main goal of this article is to discuss how the development of state-of-the-art technology has made it possible to address fundamental questions related to how the renin-angiotensin system (RAS) operates within the brain from the neurophysiological and molecular perspective. RECENT FINDINGS: The existence of the brain RAS remains surprisingly controversial. New sensitive in situ hybridization techniques and novel transgenic animals expressing reporter genes have provided pivotal information of the expression of RAS genes within the brain. We discuss studies using genetically engineered animals combined with targeted viral microinjections to study molecular mechanisms implicated in the regulation of the brain RAS. We also discuss novel drugs targeting the brain RAS that have shown promising results in clinical studies and trials. Over the last 50 years, several new physiological roles of the brain RAS have been identified. In the coming years, efforts to incorporate cutting-edge technologies such as optogenetics, chemogenetics, and single-cell RNA sequencing will lead to dramatic advances in our full understanding of how the brain RAS operates at molecular and neurophysiological levels.


Asunto(s)
Presión Sanguínea , Hipertensión , Sistema Renina-Angiotensina , Animales , Presión Sanguínea/fisiología , Encéfalo , Sistema Nervioso Central , Humanos , Renina
15.
Am J Physiol Renal Physiol ; 315(4): F1006-F1018, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897280

RESUMEN

Familial hyperkalemic hypertension is caused by mutations in with-no-lysine kinases (WNKs) or in proteins that mediate their degradation, kelch-like 3 (KLHL3) and cullin 3 (CUL3). Although the mechanisms by which WNK and KLHL3 mutations cause the disease are now clear, the effects of the disease-causing CUL3Δ403-459 mutation remain controversial. Possible mechanisms, including hyperneddylation, altered ubiquitin ligase activity, decreased association with the COP9 signalosome (CSN), and increased association with and degradation of KLHL3 have all been postulated. Here, we systematically evaluated the effects of Cul3Δ403-459 using cultured kidney cells. We first identified that the catalytically active CSN subunit jun activation domain-binding protein-1 (JAB1) does not associate with the deleted Cul3 4-helix bundle domain but instead with the adjacent α/ß1 domain, suggesting that altered protein folding underlies the impaired binding. Inhibition of deneddylation with JAB1 siRNA increased Cul3 neddylation and decreased KLHL3 abundance, similar to the Cul3 mutant. We next determined that KLHL3 degradation has both ubiquitin ligase-dependent and -independent components. Proteasomal KLHL3 degradation was enhanced by Cul3Δ403-459; however, autophagic degradation was also upregulated by this Cul3 mutant. Finally, to evaluate whether deficient substrate adaptor was responsible for the disease, we restored KLHL3 to wild-type (WT) Cul3 levels. In the absence of WT Cul3, WNK4 was not degraded, demonstrating that Cul3Δ403-459 itself cannot degrade WNK4; conversely, when WT Cul3 was present, as in diseased humans, WNK4 degradation was restored. In conclusion, deletion of exon 9 from Cul3 generates a protein that is itself ubiquitin-ligase defective but also capable of enhanced autophagocytic KLHL3 degradation, thereby exerting dominant-negative effects on the WT allele.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Proteínas Cullin/metabolismo , Hipertensión/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Proteínas Cullin/genética , Riñón/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología
16.
Am J Physiol Heart Circ Physiol ; 314(3): H580-H592, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29350998

RESUMEN

Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.


Asunto(s)
Angiotensina II , Presión Sanguínea , Sistema Nervioso Central/enzimología , Hipertensión/inducido químicamente , Hipertensión/enzimología , Neuronas/enzimología , Receptores de Superficie Celular/metabolismo , Sistema Renina-Angiotensina , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Infusiones Intraventriculares , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Neuronas/efectos de los fármacos , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Renina/administración & dosificación , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Transducción de Señal , Sinapsinas/genética , Regulación hacia Arriba , ATPasas de Translocación de Protón Vacuolares/genética
17.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R770-R780, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364700

RESUMEN

Angiotensin II (ANG) stimulates the release of arginine vasopressin (AVP) from the neurohypophysis through activation of the AT1 receptor within the brain, although it remains unclear whether AT1 receptors expressed on AVP-expressing neurons directly mediate this control. We explored the hypothesis that ANG acts through AT1A receptors expressed directly on AVP-producing cells to regulate AVP secretion. In situ hybridization and transgenic mice demonstrated localization of AVP and AT1A mRNA in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN), but coexpression of both AVP and AT1A mRNA was only observed in the SON. Mice harboring a conditional allele for the gene encoding the AT1A receptor (AT1Aflox) were then crossed with AVP-Cre mice to generate mice that lack AT1A in all cells that express the AVP gene (AT1AAVP-KO). AT1AAVP-KO mice exhibited spontaneously increased plasma and serum osmolality but no changes in fluid or salt-intake behaviors, hematocrit, or total body water. AT1AAVP-KO mice exhibited reduced AVP secretion (estimated by measurement of copeptin) in response to osmotic stimuli such as acute hypertonic saline loading and in response to chronic intracerebroventricular ANG infusion. However, the effects of these receptors on AVP release were masked by complex stimuli such as overnight dehydration and DOCA-salt treatment, which simultaneously induce osmotic, volemic, and pressor stresses. Collectively, these data support the expression of AT1A in AVP-producing cells of the SON but not the PVN, and a role for AT1A receptors in these cells in the osmotic regulation of AVP secretion.


Asunto(s)
Receptor de Angiotensina Tipo 1/fisiología , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiología , Vasopresinas/biosíntesis , Vasopresinas/fisiología , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Agua Corporal , Conducta Alimentaria , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ósmosis , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor de Angiotensina Tipo 1/biosíntesis , Receptor de Angiotensina Tipo 1/genética , Sodio en la Dieta , Vasoconstrictores/administración & dosificación , Vasoconstrictores/farmacología
18.
Clin Sci (Lond) ; 132(3): 419-436, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29371289

RESUMEN

The pathogenesis of preeclampsia (PreE), a hypertensive disorder of pregnancy, involves imbalanced T helper (TH) cell populations and resultant changes in pro- and anti-inflammatory cytokine release. Elevated copeptin (an inert biomarker of arginine vasopressin (AVP)), secretion precedes the development of symptoms in PreE in humans, and infusion of AVP proximal to and throughout gestation is sufficient to initiate cardiovascular and renal phenotypes of PreE in wild-type C57BL/6J mice. We hypothesize that AVP infusion in wild-type mice is sufficient to induce the immune changes observed in human PreE. AVP infusion throughout gestation in mice resulted in increased pro-inflammatory interferon γ (IFNg) (TH1) in the maternal plasma. The TH17-associated cytokine interleukin (IL)-17 was elevated in the maternal plasma, amniotic fluid, and placenta following AVP infusion. Conversely, the TH2-associated anti-inflammatory cytokine IL-4 was decreased in the maternal and fetal kidneys from AVP-infused dams, while IL-10 was decreased in the maternal kidney and all fetal tissues. Collectively, these results demonstrate the sufficiency of AVP to induce the immune changes typical of PreE. We investigated if T cells can respond directly to AVP by evaluating the expression of AVP receptors (AVPRs) on mouse and human CD4+ T cells. Mouse and human T cells expressed AVPR1a, AVPR1b, and AVPR2. The expression of AVPR1a was decreased in CD4+ T cells obtained from PreE-affected women. In total, our data are consistent with a potential initiating role for AVP in the immune dysfunction typical of PreE and identifies putative signaling mechanism(s) for future investigation.


Asunto(s)
Arginina Vasopresina/metabolismo , Preeclampsia/metabolismo , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Animales , Arginina Vasopresina/farmacología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Neurofisinas/metabolismo , Placenta/efectos de los fármacos , Placenta/metabolismo , Preeclampsia/inducido químicamente , Embarazo , Precursores de Proteínas/metabolismo , Vasopresinas/metabolismo
20.
Physiol Genomics ; 49(11): 653-658, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28916634

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are a family of conserved ligand-activated nuclear receptor transcription factors heterogeneously expressed in mammalian tissues. PPARγ is recognized as a master regulator of adipogenesis, fatty acid metabolism, and glucose homeostasis, but genetic evidence also supports the concept that PPARγ regulates the cardiovascular system, particularly vascular function and blood pressure. There is now compelling evidence that the beneficial blood pressure-lowering effects of PPARγ activation are due to its activity in vascular smooth muscle and endothelium, through its modulation of nitric oxide-dependent vasomotor function. Endothelial PPARγ regulates the production and bioavailability of nitric oxide, while PPARγ in the smooth muscle regulates the vasomotor response to nitric oxide. We recently identified retinol binding protein 7 (RBP7) as a PPARγ target gene that is specifically and selectively expressed in the endothelium. In this review, we will discuss the evidence that RBP7 is required to mediate the antioxidant effects of PPARγ and mediate PPARγ target gene selectivity in the endothelium.


Asunto(s)
Antioxidantes/metabolismo , Endotelio Vascular/metabolismo , PPAR gamma/metabolismo , Proteínas Celulares de Unión al Retinol/metabolismo , Animales , Humanos , Modelos Biológicos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA