Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38423761

RESUMEN

Music is a universal human attribute. The study of amusia, a neurologic music processing deficit, has increasingly elaborated our view on the neural organization of the musical brain. However, lesions causing amusia occur in multiple brain locations and often also cause aphasia, leaving the distinct neural networks for amusia unclear. Here, we utilized lesion network mapping to identify these networks. A systematic literature search was carried out to identify all published case reports of lesion-induced amusia. The reproducibility and specificity of the identified amusia network were then tested in an independent prospective cohort of 97 stroke patients (46 female and 51 male) with repeated structural brain imaging, specifically assessed for both music perception and language abilities. Lesion locations in the case reports were heterogeneous but connected to common brain regions, including bilateral temporoparietal and insular cortices, precentral gyrus, and cingulum. In the prospective cohort, lesions causing amusia mapped to a common brain network, centering on the right superior temporal cortex and clearly distinct from the network causally associated with aphasia. Lesion-induced longitudinal structural effects in the amusia circuit were confirmed as reduction of both gray and white matter volume, which correlated with the severity of amusia. We demonstrate that despite the heterogeneity of lesion locations disrupting music processing, there is a common brain network that is distinct from the language network. These results provide evidence for the distinct neural substrate of music processing, differentiating music-related functions from language, providing a testable target for noninvasive brain stimulation to treat amusia.

2.
Hum Brain Mapp ; 45(5): e26665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520376

RESUMEN

Cognitive deficits are a common and debilitating consequence of stroke, yet our understanding of the structural neurobiological biomarkers predicting recovery of cognition after stroke remains limited. In this longitudinal observational study, we set out to investigate the effect of both focal lesions and structural connectivity on poststroke cognition. Sixty-two patients with stroke underwent advanced brain imaging and cognitive assessment, utilizing the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE), at 3-month and 12-month poststroke. We first evaluated the relationship between lesions and cognition at 3 months using voxel-based lesion-symptom mapping. Next, a novel correlational tractography approach, using multi-shell diffusion-weighted magnetic resonance imaging (MRI) data collected at both time points, was used to evaluate the relationship between the white matter connectome and cognition cross-sectionally at 3 months, and longitudinally (12 minus 3 months). Lesion-symptom mapping did not yield significant findings. In turn, correlational tractography analyses revealed positive associations between both MoCA and MMSE scores and bilateral cingulum and the corpus callosum, both cross-sectionally at the 3-month stage, and longitudinally. These results demonstrate that rather than focal neural structures, a consistent structural connectome underpins the performance of two frequently used cognitive screening tools, the MoCA and the MMSE, in people after stroke. This finding should encourage clinicians and researchers to not only suspect cognitive decline when lesions affect these tracts, but also to refine their investigation of novel approaches to differentially diagnosing pathology associated with cognitive decline, regardless of the aetiology.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Cognición , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/psicología , Trastornos del Conocimiento/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Pruebas Neuropsicológicas
3.
Hum Brain Mapp ; 45(7): e26705, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716698

RESUMEN

The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.


Asunto(s)
Canto , Sustancia Blanca , Humanos , Adulto , Masculino , Persona de Mediana Edad , Anciano , Femenino , Adulto Joven , Canto/fisiología , Anciano de 80 o más Años , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Sustancia Blanca/anatomía & histología , Envejecimiento/fisiología , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/anatomía & histología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/anatomía & histología , Sustancia Gris/fisiología , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora
4.
Brain Topogr ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662300

RESUMEN

Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.

5.
Hum Brain Mapp ; 44(7): 2897-2904, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852658

RESUMEN

Poststroke aphasia typically results from brain damage to the left-lateralized language network. The contribution of the right-lateralized homologues in aphasia recovery remains equivocal. In this longitudinal observational study, we specifically investigated the role of right hemisphere structural connectome in aphasia recovery. Twenty-two patients with aphasia after a left hemispheric stroke underwent comprehensive language assessment at the early subacute and chronic stages. A novel structural connectometry approach, using multi-shell diffusion-weighted MRI data collected at the early subacute stage, was used to evaluate the relationship between right hemisphere white matter connectome and language production and comprehension abilities at early subacute stage. Moreover, we evaluated the relationship between early subacute right hemisphere white matter connectome and longitudinal change in language production and comprehension abilities. All results were corrected for multiple comparisons. Connectometry analyses revealed negative associations between early subacute stage right hemisphere structural connectivity and language production, both cross-sectionally and longitudinally (pFDR < .0125). In turn, only positive associations between right hemisphere structural connectivity and language comprehension were observed, both cross-sectionally and longitudinally (pFDR < .0125). Interhemispheric connectivity was highly associated with comprehension scores. Our results shed light on the discordant interpretations of previous findings, by providing evidence that while some right hemisphere white matter pathways may make a maladaptive contribution to the recovery of language, other pathways support the recovery of language, especially comprehension abilities.


Asunto(s)
Afasia , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Lenguaje , Imagen de Difusión por Resonancia Magnética
6.
Eur J Neurol ; 29(3): 873-882, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34661326

RESUMEN

BACKGROUND AND PURPOSE: This study was undertaken to determine and compare lesion patterns and structural dysconnectivity underlying poststroke aprosodia and amusia, using a data-driven multimodal neuroimaging approach. METHODS: Thirty-nine patients with right or left hemisphere stroke were enrolled in a cohort study and tested for linguistic and affective prosody perception and musical pitch and rhythm perception at subacute and 3-month poststroke stages. Participants listened to words spoken with different prosodic stress that changed their meaning, and to words spoken with six different emotions, and chose which meaning or emotion was expressed. In the music tasks, participants judged pairs of short melodies as the same or different in terms of pitch or rhythm. Structural magnetic resonance imaging data were acquired at both stages, and machine learning-based lesion-symptom mapping and deterministic tractography were used to identify lesion patterns and damaged white matter pathways giving rise to aprosodia and amusia. RESULTS: Both aprosodia and amusia were behaviorally strongly correlated and associated with similar lesion patterns in right frontoinsular and striatal areas. In multiple regression models, reduced fractional anisotropy and lower tract volume of the right inferior fronto-occipital fasciculus were the strongest predictors for both disorders, over time. CONCLUSIONS: These results highlight a common origin of aprosodia and amusia, both arising from damage and disconnection of the right ventral auditory stream integrating rhythmic-melodic acoustic information in prosody and music. Comorbidity of these disabilities may worsen the prognosis and affect rehabilitation success.


Asunto(s)
Trastornos de la Percepción Auditiva , Música , Trastornos de la Percepción Auditiva/etiología , Estudios de Cohortes , Humanos , Imagen por Resonancia Magnética , Trastornos del Habla
7.
Neuroimage ; 241: 118411, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293464

RESUMEN

Current views on the neural network subserving reading and its deficits in dyslexia rely largely on evidence derived from functional neuroimaging studies. However, understanding the structural organization of reading and its aberrations in dyslexia requires a hodological approach, studies of which have not provided consistent findings. Here, we adopted a whole brain hodological approach and investigated relationships between structural white matter connectivity and reading skills and phonological processing in a cross-sectional study of 44 adults using individual local connectome matrix from diffusion MRI data. Moreover, we performed quantitative anisotropy aided differential tractography to uncover structural white matter anomalies in dyslexia (23 dyslexics and 21 matched controls) and their correlation to reading-related skills. The connectometry analyses indicated that reading skills and phonological processing were both associated with corpus callosum (tapetum), forceps major and minor, as well as cerebellum bilaterally. Furthermore, the left dorsal and right thalamic pathways were associated with phonological processing. Differential tractography analyses revealed structural white matter anomalies in dyslexics in the left ventral route and bilaterally in the dorsal route compared to the controls. Connectivity deficits were also observed in the corpus callosum, forceps major, vertical occipital fasciculus and corticostriatal and thalamic pathways. Altered structural connectivity in the observed differential tractography results correlated with poor reading skills and phonological processing. Using a hodological approach, the current study provides novel evidence for the extent of the reading-related connectome and its aberrations in dyslexia. The results conform current functional neuroanatomical models of reading and developmental dyslexia but provide novel network-level and tract-level evidence on structural connectivity anomalies in dyslexia, including the vertical occipital fasciculus.


Asunto(s)
Conectoma/métodos , Dislexia/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Lectura , Sustancia Blanca/diagnóstico por imagen , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estudios Transversales , Dislexia/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/fisiología , Sustancia Blanca/fisiología , Adulto Joven
8.
Eur J Neurosci ; 54(11): 7886-7898, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34763370

RESUMEN

Recent evidence suggests that post-stroke vocal music listening can aid language recovery, but the network-level functional neuroplasticity mechanisms of this effect are unknown. Here, we sought to determine if improved language recovery observed after post-stroke listening to vocal music is driven by changes in longitudinal resting-state functional connectivity within the language network. Using data from a single-blind randomized controlled trial on stroke patients (N = 38), we compared the effects of daily listening to self-selected vocal music, instrumental music and audio books on changes of the resting-state functional connectivity within the language network and their correlation to improved language skills and verbal memory during the first 3 months post-stroke. From acute to 3-month stage, the vocal music and instrumental music groups increased functional connectivity between a cluster comprising the left inferior parietal areas and the language network more than the audio book group. However, the functional connectivity increase correlated with improved verbal memory only in the vocal music group cluster. This study shows that listening to vocal music post-stroke promotes recovery of verbal memory by inducing changes in longitudinal functional connectivity in the language network. Our results conform to the variable neurodisplacement theory underpinning aphasia recovery.


Asunto(s)
Música , Accidente Cerebrovascular , Humanos , Lenguaje , Imagen por Resonancia Magnética , Plasticidad Neuronal , Método Simple Ciego , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia
9.
J Neurosci ; 36(34): 8872-81, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27559169

RESUMEN

UNLABELLED: Although acquired amusia is a relatively common disorder after stroke, its precise neuroanatomical basis is still unknown. To evaluate which brain regions form the neural substrate for acquired amusia and its recovery, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study with 77 human stroke subjects. Structural MRIs were acquired at acute and 6 month poststroke stages. Amusia and aphasia were behaviorally assessed at acute and 3 month poststroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA) and language tests. VLSM analyses indicated that amusia was associated with a lesion area comprising the superior temporal gyrus, Heschl's gyrus, insula, and striatum in the right hemisphere, clearly different from the lesion pattern associated with aphasia. Parametric analyses of MBEA Pitch and Rhythm scores showed extensive lesion overlap in the right striatum, as well as in the right Heschl's gyrus and superior temporal gyrus. Lesions associated with Rhythm scores extended more superiorly and posterolaterally. VBM analysis of volume changes from the acute to the 6 month stage showed a clear decrease in gray matter volume in the right superior and middle temporal gyri in nonrecovered amusic patients compared with nonamusic patients. This increased atrophy was more evident in anterior temporal areas in rhythm amusia and in posterior temporal and temporoparietal areas in pitch amusia. Overall, the results implicate right temporal and subcortical regions as the crucial neural substrate for acquired amusia and highlight the importance of different temporal lobe regions for the recovery of amusia after stroke. SIGNIFICANCE STATEMENT: Lesion studies are essential in uncovering the brain regions causally linked to a given behavior or skill. For music perception ability, previous lesion studies of amusia have been methodologically limited in both spatial accuracy and time domain as well as by small sample sizes, providing coarse and equivocal information about which brain areas underlie amusia. By using longitudinal MRI and behavioral data from a large sample of stroke patients coupled with modern voxel-based analyses methods, we were able provide the first systematic evidence for the causal role of right temporal and striatal areas in music perception. Clinically, these results have important implications for the diagnosis and prognosis of amusia after stroke and for rehabilitation planning.


Asunto(s)
Trastornos de la Percepción Auditiva/etiología , Trastornos de la Percepción Auditiva/rehabilitación , Mapeo Encefálico , Trastornos del Lenguaje/etiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/complicaciones , Anciano , Trastornos de la Percepción Auditiva/diagnóstico por imagen , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Trastornos del Lenguaje/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/diagnóstico por imagen , Estudios Retrospectivos
11.
Duodecim ; 130(18): 1852-60, 2014.
Artículo en Fi | MEDLINE | ID: mdl-25558627

RESUMEN

There is no curative treatment for diseases causing brain injury. Music causes extensive activation of the brain, promoting the repair of neural systems. Addition of music listening to rehabilitation enhances the regulation or motor functions in Parkinson and stroke patients, accelerates the recovery of speech disorder and cognitive injuries after stroke, and decreases the behavioral disorders of dementia patients. Music enhances the ability to concentrate and decreases mental confusion. The effect of music can also be observed as structural and functional changes of the brain. The effect is based, among other things, on lessening of physiologic stress and depression and on activation of the dopaminergic mesolimbic system.


Asunto(s)
Encefalopatías/rehabilitación , Lesiones Encefálicas/rehabilitación , Musicoterapia , Demencia/rehabilitación , Depresión/rehabilitación , Humanos , Sistema Límbico/fisiología , Rehabilitación de Accidente Cerebrovascular
12.
Sci Rep ; 14(1): 10194, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702398

RESUMEN

Paired associative stimulation (PAS) consisting of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (known as high-PAS) induces plastic changes and improves motor performance in patients with incomplete spinal cord injury (SCI). Listening to music during PAS may potentially improve mood and arousal and facilitate PAS-induced neuroplasticity via auditory-motor coupling, but the effects have not been explored. This pilot study aimed to determine if the effect of high-PAS on motor-evoked potentials (MEPs) and subjective alertness can be augmented with music. Ten healthy subjects and nine SCI patients received three high-PAS sessions in randomized order (PAS only, PAS with music synchronized to TMS, PAS with self-selected music). MEPs were measured before (PRE), after (POST), 30 min (POST30), and 60 min (POST60) after stimulation. Alertness was evaluated with a questionnaire. In healthy subjects, MEPs increased at POST in all sessions and remained higher at POST60 in PAS with synchronized music compared with the other sessions. There was no difference in alertness. In SCI patients, MEPs increased at POST and POST30 in PAS only but not in other sessions, whereas alertness was higher in PAS with self-selected music. More research is needed to determine the potential clinical effects of using music during high-PAS.


Asunto(s)
Potenciales Evocados Motores , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Humanos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Masculino , Femenino , Adulto , Estimulación Magnética Transcraneal/métodos , Persona de Mediana Edad , Potenciales Evocados Motores/fisiología , Proyectos Piloto , Música , Voluntarios Sanos , Nivel de Alerta/fisiología , Musicoterapia/métodos
13.
Netw Neurosci ; 8(1): 158-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562284

RESUMEN

It has been previously shown that traumatic brain injury (TBI) is associated with reductions in metastability in large-scale networks in resting-state fMRI (rsfMRI). However, little is known about how TBI affects the local level of synchronization and how this evolves during the recovery trajectory. Here, we applied a novel turbulent dynamics framework to investigate whole-brain dynamics using an rsfMRI dataset from a cohort of moderate to severe TBI patients and healthy controls (HCs). We first examined how several measures related to turbulent dynamics differ between HCs and TBI patients at 3, 6, and 12 months post-injury. We found a significant reduction in these empirical measures after TBI, with the largest change at 6 months post-injury. Next, we built a Hopf whole-brain model with coupled oscillators and conducted in silico perturbations to investigate the mechanistic principles underlying the reduced turbulent dynamics found in the empirical data. A simulated attack was used to account for the effect of focal lesions. This revealed a shift to lower coupling parameters in the TBI dataset and, critically, decreased susceptibility and information-encoding capability. These findings confirm the potential of the turbulent framework to characterize longitudinal changes in whole-brain dynamics and in the reactivity to external perturbations after TBI.

14.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688718

RESUMEN

Singing-based treatments of aphasia can improve language outcomes, but the neural benefits of group-based singing in aphasia are unknown. Here, we set out to determine the structural neuroplasticity changes underpinning group-based singing-induced treatment effects in chronic aphasia. Twenty-eight patients with at least mild nonfluent poststroke aphasia were randomized into two groups that received a 4-month multicomponent singing intervention (singing group) or standard care (control group). High-resolution T1 images and multishell diffusion-weighted MRI data were collected in two time points (baseline/5 months). Structural gray matter (GM) and white matter (WM) neuroplasticity changes were assessed using language network region of interest-based voxel-based morphometry (VBM) and quantitative anisotropy-based connectometry, and their associations to improved language outcomes (Western Aphasia Battery Naming and Repetition) were evaluated. Connectometry analyses showed that the singing group enhanced structural WM connectivity in the left arcuate fasciculus (AF) and corpus callosum as well as in the frontal aslant tract (FAT), superior longitudinal fasciculus, and corticostriatal tract bilaterally compared with the control group. Moreover, in VBM, the singing group showed GM volume increase in the left inferior frontal cortex (Brodmann area 44) compared with the control group. The neuroplasticity effects in the left BA44, AF, and FAT correlated with improved naming abilities after the intervention. These findings suggest that in the poststroke aphasia group, singing can bring about structural neuroplasticity changes in left frontal language areas and in bilateral language pathways, which underpin treatment-induced improvement in speech production.


Asunto(s)
Afasia , Plasticidad Neuronal , Canto , Humanos , Plasticidad Neuronal/fisiología , Masculino , Femenino , Persona de Mediana Edad , Afasia/fisiopatología , Afasia/terapia , Afasia/rehabilitación , Afasia/patología , Afasia/etiología , Anciano , Canto/fisiología , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/complicaciones , Enfermedad Crónica , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética , Resultado del Tratamiento
15.
Front Aging Neurosci ; 15: 1236971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731954

RESUMEN

Background: Understanding healthy brain ageing has become vital as populations are ageing rapidly and age-related brain diseases are becoming more common. In normal brain ageing, speech processing undergoes functional reorganisation involving reductions of hemispheric asymmetry and overactivation in the prefrontal regions. However, little is known about how these changes generalise to other vocal production, such as singing, and how they are affected by associated cognitive demands. Methods: The present cross-sectional fMRI study systematically maps the neural correlates of vocal production across adulthood (N=100, age 21-88 years) using a balanced 2x3 design where tasks varied in modality (speech: proverbs / singing: song phrases) and cognitive demand (repetition / completion from memory / improvisation). Results: In speech production, ageing was associated with decreased left pre- and postcentral activation across tasks and increased bilateral angular and right inferior temporal and fusiform activation in the improvisation task. In singing production, ageing was associated with increased activation in medial and bilateral prefrontal and parietal regions in the completion task, whereas other tasks showed no ageing effects. Direct comparisons between the modalities showed larger age-related activation changes in speech than singing across tasks, including a larger left-to-right shift in lateral prefrontal regions in the improvisation task. Conclusion: The present results suggest that the brains' singing network undergoes differential functional reorganisation in normal ageing compared to the speech network, particularly during a task with high executive demand. These findings are relevant for understanding the effects of ageing on vocal production as well as how singing can support communication in healthy ageing and neurological rehabilitation.

16.
Ther Adv Neurol Disord ; 16: 17562864231186091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483642

RESUMEN

IgG4-related disease (IgG4-RD) is an emerging immune-mediated chronic fibrotic disease characterized by tumour-like mass formation. Reports of brain parenchymal involvement in IgG4-RD are rare and complete treatment-related remission of lesions has never been reported. Here, we present a woman in her mid-50s who developed headache and seizures. Brain magnetic resonance imaging revealed frontal bilateral pachymeningitis and a left frontal lobe parenchymal lesion, and pathologic findings were consistent with an IgG4-RD central nervous system manifestation. She had a history of tumour-like growth around the right optic nerve, orbital and maxillary cavities treated successfully with corticosteroids 28 years ago, and was receiving infliximab as a maintenance therapy for uveitis for the last 14 years. After initial high-dose corticosteroid treatment, the patient was treated with rituximab, and after 3 months, the patient presented with complete remission of IgG4-RD lesions and associated symptoms. This case illustrates the chronic, decades-spanning nature of IgG4-RD, and a complete response to rituximab even with intracerebral mass lesions that had emerged despite the use of infliximab, a therapy previously reported successful in IgG4-RD.

17.
Commun Biol ; 6(1): 779, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495670

RESUMEN

Theories expounding the neural relationship between speech and singing range from sharing neural circuitry, to relying on opposite hemispheres. Yet, hodological studies exploring their shared and distinct neural networks remain scarce. In this study, we combine a white matter connectometry approach together with comprehensive and naturalistic appraisal of verbal expression during spoken language production and singing in a sample of individuals with post-stroke aphasia. Our results reveal that both spoken language production and singing are mainly supported by the left hemisphere language network and projection pathways. However, while spoken language production mostly engaged dorsal and ventral streams of speech processing, singing was associated primarily with the left ventral stream. These findings provide evidence that speech and singing share core neuronal circuitry within the left hemisphere, while distinct ventral stream contributions explain frequently observed dissociations in aphasia. Moreover, the results suggest prerequisite biomarkers for successful singing-based therapeutic interventions.


Asunto(s)
Afasia , Canto , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Lenguaje , Afasia/etiología
18.
Brain Commun ; 5(1): fcac337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687394

RESUMEN

The ability to produce words through singing can be preserved in severe aphasia, but the benefits of group-based singing rehabilitation in aphasia are largely unknown. Our aim was to determine the efficacy of a multicomponent singing intervention on communication and speech production, emotional-social functioning and caregiver well-being in aphasia. Fifty-four patients with acquired brain injury and chronic aphasia and their family caregivers (n = 43) were recruited. Using a crossover randomized controlled trial design, participants were randomized to two groups who received a 4-month singing intervention either during the first or second half of the study in addition to standard care. The intervention comprised weekly group-based training (including choir singing and group-level melodic intonation therapy) and tablet-assisted singing training at home. At baseline, 5- and 9-month stages, patients were assessed with tests and questionnaires on communication and speech production, mood, social functioning, and quality of life and family caregivers with questionnaires on caregiver burden. All participants who participated in the baseline measurement (n = 50) were included in linear mixed model analyses. Compared with standard care, the singing intervention improved everyday communication and responsive speech production from baseline to 5-month stage, and these changes were sustained also longitudinally (baseline to 9-month stage). Additionally, the intervention enhanced patients' social participation and reduced caregiver burden. This study provides novel evidence that group-based multicomponent singing training can enhance communication and spoken language production in chronic aphasia as well as improve psychosocial wellbeing in patients and caregivers. https://www.clinicaltrials.gov, Unique identifier: NCT03501797.

19.
Neurorehabil Neural Repair ; 37(4): 218-227, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083133

RESUMEN

BACKGROUND: White matter hyperintensities (WMH) are considered to contribute to diminished brain reserve, negatively impacting on stroke recovery. While WMH identified in the chronic phase after stroke have been associated with post-stroke aphasia, the contribution of premorbid WMH to the early recovery of language across production and comprehension has not been investigated. OBJECTIVE: To investigate the relationship between premorbid WMH severity and longitudinal comprehension and production outcomes in aphasia, after controlling for stroke lesion variables. METHODS: Longitudinal behavioral data from individuals with a left-hemisphere stroke were included at the early subacute (n = 37) and chronic (n = 28) stage. Spoken language comprehension and production abilities were assessed at both timepoints using word and sentence-level tasks. Magnetic resonance imaging (MRI) was performed at the early subacute stage to derive stroke lesion variables (volume and proportion damage to critical regions) and WMH severity rating. RESULTS: The presence of severe WMH explained an additional 18% and 25% variance in early subacute (t = -3.00, p = .004) and chronic (t = -3.60, P = .001) language comprehension abilities respectively, after controlling for stroke lesion variables. WMH did not predict additional variance of language production scores. CONCLUSIONS: Subacute clinical MRI can be used to improve prognoses of recovery of aphasia after stroke. We demonstrate that severe early subacute WMH add to the prediction of impaired longitudinal language recovery in comprehension, but not production. This emphasizes the need to consider different domains of language when investigating novel neurobiological predictors of aphasia recovery.


Asunto(s)
Afasia , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Afasia/etiología , Afasia/complicaciones , Lenguaje , Imagen por Resonancia Magnética/métodos
20.
Handb Clin Neurol ; 187: 55-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35964992

RESUMEN

Music is a universal and important human trait, which is orchestrated by complex brain network centered in the temporal lobe but connecting broadly to multiple cortical and subcortical regions. In the human brain, music engages a widespread bilateral network of regions that govern auditory perception, syntactic and semantic processing, attention and memory, emotion and reward, and motor skills. The ability to perceive or produce music can be severely impaired either due to abnormal brain development or brain damage, leading to a condition called amusia. Modern neuroimaging studies of amusia have provided valuable knowledge about the structure and function of specific brain regions and white matter pathways that are crucial for music perception, highlighting the role of the right frontotemporal network in this process. In this chapter, we provide an overview on the neural basis of music processing in a healthy brain and review evidence obtained from the studies of congenital and acquired amusia.


Asunto(s)
Trastornos de la Percepción Auditiva , Música , Percepción Auditiva , Trastornos de la Percepción Auditiva/etiología , Encéfalo/diagnóstico por imagen , Humanos , Lóbulo Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA