Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 218(Pt 24): 3866-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26486359

RESUMEN

The symbiosis between corals and dinoflagellates promotes the rapid growth of corals in shallow tropical oceans, and the high overall productivity of coral reefs. The aim of this study was to quantify and understand variation in carbon acquisition and allocation among coral species. We measured multiple physiological traits (including symbiont density, calcification, photosynthesis and tissue composition) for the same coral fragments to facilitate direct comparisons between species (Stylophora pistillata, Pocillopora damicornis, Galaxea fascicularis, Turbinaria reniformis and Acropora sp.). Tissue protein content was highly sensitive to the availability of particulate food, increasing in fed colonies of all species. Despite among-species variation in physiology, and consistent effects of feeding on some traits, overall energy allocation to tissue compared with skeleton growth did not depend on food availability. Extrapolating from our results, estimated whole-assemblage carbon uptake varied >20-fold across different coral assemblages, but this variation was largely driven by differences in the tissue surface area of different colony morphologies, rather than by differences in surface-area-specific physiological rates. Our results caution against drawing conclusions about reef productivity based solely on physiological rates measured per unit tissue surface area. Understanding the causes and consequences of among-species variation in physiological energetics provides insight into the mechanisms that underlie the fluxes of organic matter within reefs, and between reefs and the open ocean.


Asunto(s)
Antozoos/metabolismo , Carbono/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calcificación Fisiológica , Arrecifes de Coral , Dinoflagelados/metabolismo , Fotosíntesis , Especificidad de la Especie , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA