Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 579(7800): 603-608, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132710

RESUMEN

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Asunto(s)
Acetaldehído/química , Reactivos de Enlaces Cruzados/química , Daño del ADN , Reparación del ADN , Replicación del ADN/fisiología , ADN/química , Etanol/química , Anemia de Fanconi/metabolismo , Animales , Cisplatino/química , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Etanol/farmacología , Mutagénesis/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Mutación Puntual/efectos de los fármacos , Mutación Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
2.
J Neurosci ; 43(26): 4755-4774, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37286354

RESUMEN

NMDA receptors (NMDARs) are ionotropic glutamate receptors that play a key role in excitatory neurotransmission. The number and subtype of surface NMDARs are regulated at several levels, including their externalization, internalization, and lateral diffusion between the synaptic and extrasynaptic regions. Here, we used novel anti-GFP (green fluorescent protein) nanobodies conjugated to either the smallest commercially available quantum dot 525 (QD525) or the several nanometer larger (and thus brighter) QD605 (referred to as nanoGFP-QD525 and nanoGFP-QD605, respectively). Targeting the yellow fluorescent protein-tagged GluN1 subunit in rat hippocampal neurons, we compared these two probes to a previously established larger probe, a rabbit anti-GFP IgG together with a secondary IgG conjugated to QD605 (referred to as antiGFP-QD605). The nanoGFP-based probes allowed faster lateral diffusion of the NMDARs, with several-fold increased median values of the diffusion coefficient (D). Using thresholded tdTomato-Homer1c signals to mark synaptic regions, we found that the nanoprobe-based D values sharply increased at distances over 100 nm from the synaptic edge, while D values for antiGFP-QD605 probe remained unchanged up to a 400 nm distance. Using the nanoGFP-QD605 probe in hippocampal neurons expressing the GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits, we detected subunit-dependent differences in the synaptic localization of NMDARs, D value, synaptic residence time, and synaptic-extrasynaptic exchange rate. Finally, we confirmed the applicability of the nanoGFP-QD605 probe to study differences in the distribution of synaptic NMDARs by comparing to data obtained with nanoGFPs conjugated to organic fluorophores, using universal point accumulation imaging in nanoscale topography and direct stochastic optical reconstruction microscopy.SIGNIFICANCE STATEMENT Our study systematically compared the localization and mobility of surface NMDARs containing GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits expressed in rodent hippocampal neurons, using anti-green fluorescent protein (GFP) nanobodies conjugated to the quantum dot 605 (nanoGFP-QD605), as well as nanoGFP probes conjugated with small organic fluorophores. Our comprehensive analysis showed that the method used to delineate the synaptic region plays an important role in the study of synaptic and extrasynaptic pools of NMDARs. In addition, we showed that the nanoGFP-QD605 probe has optimal parameters for studying the mobility of NMDARs because of its high localization accuracy comparable to direct stochastic optical reconstruction microscopy and longer scan time compared with universal point accumulation imaging in nanoscale topography. The developed approaches are readily applicable to the study of any GFP-labeled membrane receptors expressed in mammalian neurons.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Anticuerpos de Dominio Único , Ratas , Animales , Conejos , Receptores de N-Metil-D-Aspartato/metabolismo , Anticuerpos de Dominio Único/metabolismo , Sinapsis/fisiología , Hipocampo/metabolismo , Neuronas/metabolismo , Inmunoglobulina G/metabolismo , Mamíferos
3.
Nucleic Acids Res ; 50(2): 635-650, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35018474

RESUMEN

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Coronavirus/genética , Descubrimiento de Drogas , Humanos , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Relación Estructura-Actividad
4.
Nucleic Acids Res ; 50(18): 10436-10448, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36155818

RESUMEN

Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.


Asunto(s)
Reparación del ADN , Endodesoxirribonucleasas/metabolismo , ADN/química , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple , Zinc
5.
J Virol ; 95(15): e0046321, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011548

RESUMEN

The OC43 coronavirus is a human pathogen that usually causes only the common cold. One of its key enzymes, similar to other coronaviruses, is the 2'-O-RNA methyltransferase (MTase), which is essential for viral RNA stability and expression. Here, we report the crystal structure of the 2'-O-RNA MTase in a complex with the pan-methyltransferase inhibitor sinefungin solved at 2.2-Å resolution. The structure reveals an overall fold consistent with the fold observed in other coronaviral MTases. The major differences are in the conformation of the C terminus of the nsp16 subunit and an additional helix in the N terminus of the nsp10 subunits. The structural analysis also revealed very high conservation of the S-adenosyl methionine (SAM) binding pocket, suggesting that the SAM pocket is a suitable spot for the design of antivirals effective against all human coronaviruses. IMPORTANCE Some coronaviruses are dangerous pathogens, while some cause only common colds. The reasons are not understood, although the spike proteins probably play an important role. However, to understand the coronaviral biology in sufficient detail, we need to compare the key enzymes from different coronaviruses. We solved the crystal structure of 2'-O-RNA methyltransferase of the OC43 coronavirus, a virus that usually causes mild colds. The structure revealed some differences in the overall fold but also revealed that the SAM binding site is conserved, suggesting that development of antivirals against multiple coronaviruses is feasible.


Asunto(s)
Betacoronavirus/enzimología , Metiltransferasas/química , Proteínas Virales/química , Betacoronavirus/genética , Sitios de Unión , Cristalografía por Rayos X , Metiltransferasas/genética , Conformación Proteica en Hélice alfa , Proteínas Virales/genética
6.
PLoS Pathog ; 16(12): e1009100, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33264373

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.


Asunto(s)
COVID-19 , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside/química , Fosfoproteínas/química , ARN Viral/química , SARS-CoV-2/química , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Nucleocápside/genética , Fosfoproteínas/genética , ARN Viral/genética , SARS-CoV-2/genética
7.
Mol Cell ; 54(3): 472-84, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24726326

RESUMEN

SLX4 binds to three nucleases (XPF-ERCC1, MUS81-EME1, and SLX1), and its deficiency leads to genomic instability, sensitivity to DNA crosslinking agents, and Fanconi anemia. However, it is not understood how SLX4 and its associated nucleases act in DNA crosslink repair. Here, we uncover consequences of mouse Slx4 deficiency and reveal its function in DNA crosslink repair. Slx4-deficient mice develop epithelial cancers and have a contracted hematopoietic stem cell pool. The N-terminal domain of SLX4 (mini-SLX4) that only binds to XPF-ERCC1 is sufficient to confer resistance to DNA crosslinking agents. Recombinant mini-SLX4 enhances XPF-ERCC1 nuclease activity up to 100-fold, directing specificity toward DNA forks. Mini-SLX4-XPF-ERCC1 also vigorously stimulates dual incisions around a DNA crosslink embedded in a synthetic replication fork, an essential step in the repair of this lesion. These observations define vertebrate SLX4 as a tumor suppressor, which activates XPF-ERCC1 nuclease specificity in DNA crosslink repair.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Recombinasas/fisiología , Animales , Secuencia de Bases , Células de la Médula Ósea/patología , Aductos de ADN/química , Daño del ADN , Proteínas de Unión al ADN/química , Endonucleasas/química , Células Madre Hematopoyéticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/enzimología , Conformación de Ácido Nucleico , Proteínas Supresoras de Tumor
8.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206406

RESUMEN

Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.


Asunto(s)
Antivirales/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteasas/farmacología , Virus ARN/enzimología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Virus de la Encefalitis Transmitidos por Garrapatas/enzimología , Colorantes Fluorescentes/química , Humanos , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , SARS-CoV-2/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Tratamiento Farmacológico de COVID-19
9.
Nucleic Acids Res ; 46(22): 11980-11989, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30329088

RESUMEN

NExo is an enzyme from Neisseria meningitidis that is specialized in the removal of the 3'-phosphate and other 3'-lesions, which are potential blocks for DNA repair. NExo is a highly active DNA 3'-phosphatase, and although it is from the class II AP family it lacks AP endonuclease activity. In contrast, the NExo homologue NApe, lacks 3'-phosphatase activity but is an efficient AP endonuclease. These enzymes act together to protect the meningococcus from DNA damage arising mainly from oxidative stress and spontaneous base loss. In this work, we present crystal structures of the specialized 3'-phosphatase NExo bound to DNA in the presence and absence of a 3'-phosphate lesion. We have outlined the reaction mechanism of NExo, and using point mutations we bring mechanistic insights into the specificity of the 3'-phosphatase activity of NExo. Our data provide further insight into the molecular origins of plasticity in substrate recognition for this class of enzymes. From this we hypothesize that these specialized enzymes lead to enhanced efficiency and accuracy of DNA repair and that this is important for the biological niche occupied by this bacterium.


Asunto(s)
Proteínas Bacterianas/química , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas de Unión al ADN/química , Exodesoxirribonucleasas/química , Neisseria meningitidis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , Daño del ADN , Endonucleasas/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Neisseria meningitidis/genética , Estrés Oxidativo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 109(42): 16852-7, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23035246

RESUMEN

Base excision repair (BER) is a highly conserved DNA repair pathway throughout all kingdoms from bacteria to humans. Whereas several enzymes are required to complete the multistep repair process of damaged bases, apurinic-apyrimidic (AP) endonucleases play an essential role in enabling the repair process by recognizing intermediary abasic sites cleaving the phosphodiester backbone 5' to the abasic site. Despite extensive study, there is no structure of a bacterial AP endonuclease bound to substrate DNA. Furthermore, the structural mechanism for AP-site cleavage is incomplete. Here we report a detailed structural and biochemical study of the AP endonuclease from Neisseria meningitidis that has allowed us to capture structural intermediates providing more complete snapshots of the catalytic mechanism. Our data reveal subtle differences in AP-site recognition and kinetics between the human and bacterial enzymes that may reflect different evolutionary pressures.


Asunto(s)
Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/metabolismo , Modelos Moleculares , Neisseria meningitidis/genética , Cristalografía por Rayos X , ADN/química , Furanos , Humanos , Estructura Molecular , Neisseria meningitidis/metabolismo , Conformación Proteica , Pliegue de Proteína
11.
Nucleic Acids Res ; 40(5): 2065-75, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22067446

RESUMEN

We have previously demonstrated that the two Exonuclease III (Xth) family members present within the obligate human pathogen Neisseria meningitidis, NApe and NExo, are important for survival under conditions of oxidative stress. Of these, only NApe possesses AP endonuclease activity, while the primary function of NExo remained unclear. We now reveal further functional specialization at the level of 3'-PO(4) processing for NExo. We demonstrate that the bi-functional meningococcal glycosylases Nth and MutM can perform strand incisions at abasic sites in addition to NApe. However, no such functional redundancy exists for the 3'-phosphatase activity of NExo, and the cytotoxicity of 3'-blocking lesions is reflected in the marked sensitivity of a mutant lacking NExo to oxidative stress, compared to strains deficient in other base excision repair enzymes. A histidine residue within NExo that is responsible for its lack of AP endonuclease activity is also important for its 3'-phosphatase activity, demonstrating an evolutionary trade off in enzyme function at the single amino acid level. This specialization of two Xth enzymes for the 3'-end processing and strand-incision reactions has not previously been observed and provides a new paradigm within the prokaryotic world for separation of these critical functions during base excision repair.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Neisseria meningitidis/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Daño del ADN , Exodesoxirribonucleasas/química , Histidina/química , Viabilidad Microbiana , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/química , Especificidad por Sustrato
12.
Mol Microbiol ; 83(5): 1064-1079, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22296581

RESUMEN

Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterized meningococcal base excision repair enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However, MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence shows that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Neisseria meningitidis/genética , Estrés Oxidativo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ADN-Formamidopirimidina Glicosilasa/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Neisseria meningitidis/enzimología
13.
Antiviral Res ; 218: 105714, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689311

RESUMEN

The RNA 2'-O methyltransferase (MTase) VP39 of the monkeypox virus (MpxV) participates in RNA capping within poxviruses. Sub-micromolar inhibitors targeting this enzyme were already reported. However, these 7-deaza analogs of S-adenosyl methionine (SAH) had not been tested in cellular assays until now. In this study, we employed plaque assays and cytopathic effect-based assays to evaluate the effectiveness of these compounds. All tested compounds demonstrated antiviral activity against MpxV, with EC50 values ranging from 0.06 to 2.7 µM. Nevertheless, some of these compounds also exhibited cytotoxicity in HeLa cells, while others showed no toxicity. Notably, the non-toxic compounds featured a large aromatic substituent at the 7-deaza position, whereas the toxic compounds had a small substituent at the same position. These findings suggest that VP39 represents a bona fide target for the development of antiviral drugs against MpxV.

14.
Antiviral Res ; 216: 105663, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421984

RESUMEN

Mpox is a zoonotic disease caused by the mpox virus (MPXV), which has gained attention due to its rapid and widespread transmission, with reports from more than 100 countries. The virus belongs to the Orthopoxvirus genus, which also includes variola virus and vaccinia virus. In poxviruses, the RNA cap is crucial for the translation and stability of viral mRNAs and also for immune evasion. This study presents the crystal structure of the mpox 2'-O-methyltransfarase VP39 in complex with a short cap-0 RNA. The RNA substrate binds to the protein without causing any significant changes to its overall fold and is held in place by a combination of electrostatic interactions, π-π stacking and hydrogen bonding. The structure also explains the mpox VP39 preference for a guanine base at the first position; it reveals that guanine forms a hydrogen bond that an adenine would not be able to form.


Asunto(s)
Mpox , Caperuzas de ARN , Humanos , Caperuzas de ARN/metabolismo , Metilación , Metiltransferasas/química , Sitios de Unión , Proteínas Virales/genética
15.
Nat Commun ; 14(1): 2259, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080993

RESUMEN

Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it. A comparison of this 2'-O-RNA MTase with enzymes from unrelated single-stranded RNA viruses (SARS-CoV-2 and Zika) reveals a conserved sinefungin binding mode, implicating that a single inhibitor could be used against unrelated viral families. Indeed, several of our inhibitors such as TO507 also inhibit the coronaviral nsp14 MTase.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , Metiltransferasas/metabolismo , SARS-CoV-2/genética , Monkeypox virus/genética , Monkeypox virus/metabolismo , Proteínas no Estructurales Virales/química , ARN , Virus Zika/genética , ARN Viral/genética
16.
bioRxiv ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37645851

RESUMEN

Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven ß subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the ß1, ß2 and ß5 subunits, while CP-17 binds the ß2 and ß5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.

17.
DNA Repair (Amst) ; 113: 103300, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35255312

RESUMEN

DNA interstrand crosslinks (ICLs) strands pose an impenetrable barrier for DNA replication. Different ICLs are known to recruit distinct DNA repair pathways. NEIL3 glycosylase has been known to remove an abasic (Ap) site derived DNA crosslink (Ap-ICL). An Ap-ICL forms spontaneously from the Ap site with an adjacent adenine in the opposite strand. Lack of genetic models and a poor understanding of the fate of these lesions leads to many questions about the occurrence and the toxicity of Ap-ICL in cells. Here, we investigate the circumstances of Ap-ICL formation. With an array of different oligos, we have investigated the rates of formation, the yields, and the stability of Ap-ICL. Our findings point out how different bases in the vicinity of the Ap site change crosslink formation in vitro. We reveal that AT-rich rather than GC-rich regions in the surrounding Ap site lead to higher rates of Ap-ICL formation. Overall, our data reveal that Ap-ICL can be formed in virtually any DNA sequence context surrounding a hot spot of a 5'-Ap-dT pair, albeit with significantly different rates and yields. Based on Ap-ICL formation in vitro, we attempt to predict the number of Ap-ICLs in the cell.


Asunto(s)
Replicación del ADN , ADN , Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN , Reparación del ADN
18.
Artículo en Inglés | MEDLINE | ID: mdl-20693659

RESUMEN

Retroviral integrases are vital enzymes in the viral life cycle and thus are important targets for antiretroviral drugs. The structure of the catalytic core domain of the integrase from human foamy virus, which is related to HIV-1, has been solved. The structure of the protein is presented in two different crystal forms, each containing several molecules in the asymmetric unit, with and without the essential manganese or magnesium ion, and the structures are compared in detail. This allows regions of high structural variability to be pinpointed, as well as the effect of divalent cations on the conformation of the catalytic site.


Asunto(s)
Dominio Catalítico , Integrasas/química , Spumavirus/enzimología , Cristalografía por Rayos X , Integrasas/genética , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Homología Estructural de Proteína
19.
FEBS Lett ; 594(18): 3032-3044, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598485

RESUMEN

Bacterial MutM is a DNA repair glycosylase removing DNA damage generated from oxidative stress and, therefore, preventing mutations and genomic instability. MutM belongs to the Fpg/Nei family of prokaryotic enzymes sharing structural and functional similarities with their eukaryotic counterparts, for example, NEIL1-NEIL3. Here, we present two crystal structures of MutM from pathogenic Neisseria meningitidis: a MutM holoenzyme and MutM bound to DNA. The free enzyme exists in an open conformation, while upon binding to DNA, both the enzyme and DNA undergo substantial structural changes and domain rearrangement. Our data show that not only NEI glycosylases but also the MutMs undergo dramatic conformational changes. Moreover, crystallographic data support the previously published observations that MutM enzymes are rather flexible and dynamic molecules.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , ADN-Formamidopirimidina Glicosilasa/química , Neisseria meningitidis/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , ADN-Formamidopirimidina Glicosilasa/metabolismo , Unión Proteica , Dominios Proteicos
20.
Nat Commun ; 11(1): 3717, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709887

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. 2'-O-RNA methyltransferase (MTase) is one of the enzymes of this virus that is a potential target for antiviral therapy as it is crucial for RNA cap formation; an essential process for viral RNA stability. This MTase function is associated with the nsp16 protein, which requires a cofactor, nsp10, for its proper activity. Here we show the crystal structure of the nsp10-nsp16 complex bound to the pan-MTase inhibitor sinefungin in the active site. Our structural comparisons reveal low conservation of the MTase catalytic site between Zika and SARS-CoV-2 viruses, but high conservation of the MTase active site between SARS-CoV-2 and SARS-CoV viruses; these data suggest that the preparation of MTase inhibitors targeting several coronaviruses - but not flaviviruses - should be feasible. Together, our data add to important information for structure-based drug discovery.


Asunto(s)
Betacoronavirus/enzimología , Metiltransferasas/química , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología , COVID-19 , Dominio Catalítico , Infecciones por Coronavirus/virología , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Metiltransferasas/metabolismo , Modelos Químicos , Modelos Moleculares , Pandemias , Neumonía Viral/virología , Caperuzas de ARN , Estabilidad del ARN , ARN Viral/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA