Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338737

RESUMEN

The therapeutic effect of mesenchymal stromal cells (MSCs) has been described for a variety of disorders, including those affecting musculoskeletal tissues. In this context, the literature reports several data about the regenerative effectiveness of MSCs derived from bone marrow, adipose tissue, and an amniotic membrane (BMSCs, ASCs, and hAMSCs, respectively), either when expanded or when acting as clinical-grade biologic pillars of products used at the point of care. To date, there is no evidence about the superiority of one source over the others from a clinical perspective. Therefore, a reliable characterization of the tissue-specific MSC types is mandatory to identify the most effective treatment, especially when tailored to the target disease. Because molecular characterization is a crucial parameter for cell definition, the need for reliable normalizers as housekeeping genes (HKGs) is essential. In this report, the stability levels of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) were sifted into BMSCs, ASCs, and hAMSCs. Adult and fetal/neonatal MSCs showed opposite HKG stability rankings. Moreover, by analyzing MSC types side-by-side, comparison-specific HKGs emerged. The effect of less performant HKG normalization was also demonstrated in genes coding for factors potentially involved in and predicting MSC therapeutic activity for osteoarthritis as a model musculoskeletal disorder, where the choice of the most appropriate normalizer had a higher impact on the donors rather than cell populations when compared side-by-side. In conclusion, this work confirms HKG source-specificity for MSCs and suggests the need for cell-type specific normalizers for cell source or condition-tailored gene expression studies.


Asunto(s)
Genes Esenciales , Células Madre Mesenquimatosas , Médula Ósea , Diferenciación Celular/genética , Medicina Regenerativa , Amnios , Tejido Adiposo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas
2.
Immun Ageing ; 20(1): 41, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573338

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS: Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS: We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.

3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569832

RESUMEN

Duchenne muscular dystrophy (DMD) is a muscle disease caused by mutations in the dystrophin gene characterized by myofiber fragility and progressive muscle degeneration. The genetic defect results in a reduced number of self-renewing muscle stem cells (MuSCs) and an impairment of their activation and differentiation, which lead to the exhaustion of skeletal muscle regeneration potential and muscle replacement by fibrotic and fatty tissue. In this study, we focused on an unexplored strategy to improve MuSC function and to preserve their niche based on the regenerative properties of mesenchymal stromal cells from the amniotic membrane (hAMSCs), that are multipotent cells recognized to have a role in tissue repair in different disease models. We demonstrate that the hAMSC secretome (CM hAMSC) and extracellular vesicles (EVs) isolated thereof directly stimulate the in vitro proliferation and differentiation of human myoblasts and mouse MuSC from dystrophic muscles. Furthermore, we demonstrate that hAMSC secreted factors modulate the muscle stem cell niche in dystrophic-mdx-mice. Interestingly, local injection of EV hAMSC in mdx muscles correlated with an increase in the number of activated Pax7+/Ki67+ MuSCs and in new fiber formation. EV hAMSCs also significantly reduced muscle collagen deposition, thus counteracting fibrosis and MuSCs exhaustion, two hallmarks of DMD. Herein for the first time we demonstrate that CM hAMSC and EVs derived thereof promote muscle regeneration by supporting proliferation and differentiation of resident muscle stem cells. These results pave the way for the development of a novel treatment to counteract DMD progression by reducing fibrosis and enhancing myogenesis in dystrophic muscles.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Humanos , Animales , Ratones , Ratones Endogámicos mdx , Amnios , Músculo Esquelético , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 24(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37240083

RESUMEN

Amniotic membrane and amniotic fluid derived cells are regarded as a promising stem cell source for developing regenerative medicine techniques, although they have never been tested on male infertility diseases such as varicocele (VAR). The current study aimed to examine the effects of two distinct cell sources, human Amniotic Fluid Mesenchymal Stromal Cells (hAFMSCs) and amniotic epithelial cells (hAECs), on male fertility outcomes in a rat induced VAR model. To explain cell-dependent enhancement of reproductive outcomes in rats transplanted with hAECs and hAFMSCs, insights on testis morphology, endocannabinoid system (ECS) expression and inflammatory tissue response have been carried out alongside cell homing assessment. Both cell types survived 120 days post-transplantation by modulating the ECS main components, promoting proregenerative M2 macrophages (Mφ) recruitment and a favorable anti-inflammatory IL10 expression pattern. Of note, hAECs resulted to be more effective in restoring rat fertility rate by enhancing both structural and immunoresponse mechanisms. Moreover, immunofluorescence analysis revealed that hAECs contributed to CYP11A1 expression after transplantation, whereas hAFMSCs moved towards the expression of Sertoli cell marker, SOX9, confirming a different contribution into the mechanisms leading to testis homeostasis. These findings highlight, for the first time, a distinct role of amniotic membrane and amniotic fluid derived cells in male reproduction, thus proposing innovative targeted stem-based regenerative medicine protocols for remedying high-prevalence male infertility conditions such as VAR.


Asunto(s)
Infertilidad Masculina , Varicocele , Ratas , Masculino , Humanos , Animales , Células Epiteliales/metabolismo , Varicocele/terapia , Varicocele/metabolismo , Amnios , Líquido Amniótico , Fertilidad , Infertilidad Masculina/metabolismo , Diferenciación Celular
5.
Colorectal Dis ; 24(12): 1567-1575, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35916639

RESUMEN

AIM: The aetiology of cryptoglandular anal fistula (AF) is poorly understood. Evidence suggests that persistence and/or recurrence of the disease is more related to inflammatory than infectious factors. The aim of this study was to investigate the immune profile of cryptoglandular AF and to perform a histopathological characterization. METHOD: Fistulectomy was performed in all patients; healthy ischioanal fat from the same patients was used as a control. Samples were evaluated by the Luminex xMAP system for the detection of 27 analytes. AF tissues were analysed using immunofluorescence. Staining was performed using primary antibodies to identify M1 inflammatory and M2 anti-inflammatory macrophages. Selective staining of total T lymphocytes and different T lymphocyte subsets was performed. RESULTS: Twenty patients with AF underwent a fistulectomy. Specific cytokine pathways differentiated AF from healthy tissue: pro-inflammatory cytokines interleukin (IL)-1ß, IL-4, IL-8 and IL-17 and the anti-inflammatory cytokine IL-10 were overexpressed in AF compared with controls. Chemokines involved in macrophage recruitment (CCL2, CCL3, CCL4) were higher in AF than in healthy fatty tissue. Moreover, we showed that Tc17 cells characterize AF patients, thus confirming the enzyme-linked immunosorbent assay data. Furthermore, elevated infiltration of CD68+ myeloid cells and a reduction of the M1/M2 ratio characterize AF patients. CONCLUSION: A combination of inflammatory cytokines, chemokines and growth factors reside in the wound microenvironment of AF patients. For the first time an important prevalence of Tc17 cells and a reduction in the M1/M2 ratio was observed, thus suggesting new insights into the immunological characterization of AF patients.


Asunto(s)
Citocinas , Fístula Rectal , Humanos , Quimiocinas/metabolismo , Macrófagos/metabolismo , Fístula Rectal/etiología , Fístula Rectal/cirugía
6.
Biotechnol Bioeng ; 118(1): 465-480, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997340

RESUMEN

Chondral and osteochondral lesions represent one of the most challenging problems in the orthopedic field, as these types of injuries lead to disability and worsened quality of life for patients and have an economic impact on the healthcare system. The aim of this in vivo study was to develop a new tissue engineering approach through a hybrid scaffold for osteochondral tissue regeneration made of porous polyurethane foam (PU) coated under vacuum with calcium phosphates (PU/VAC). Scaffold characterization showed a highly porous and interconnected structure. Human amniotic mesenchymal stromal cells (hAMSCs) were loaded into scaffolds using pectin (PECT) as a carrier. Osteochondral defects in medial femoral condyles of rabbits were created and randomly allocated in one of the following groups: plain scaffold (PU/VAC), scaffold with hAMSCs injected in the implant site (PU/VAC/hAMSC), scaffold with hAMSCs loaded in pectin (PU/VAC/PECT/hAMSC), and no treated defects (untreated). The therapeutic efficacy was assessed by macroscopic, histological, histomorphometric, microtomographic, and ultrastructural analyses at 3, 6, 12, and 24 weeks. Histological results showed that the scaffold was permissive to tissue growth and penetration, an immature osteocartilaginous tissue was observed at early experimental times, with a more accentuated bone regeneration in comparison with the cartilage layer in the absence of any inflammatory reaction.


Asunto(s)
Materiales Biomiméticos , Regeneración Ósea , Cartílago Articular , Fémur , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Andamios del Tejido/química , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Cartílago Articular/lesiones , Cartílago Articular/metabolismo , Células Inmovilizadas , Fémur/lesiones , Fémur/metabolismo , Xenoinjertos , Humanos , Masculino , Conejos
7.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810280

RESUMEN

The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton's jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE.


Asunto(s)
Linfocitos B/inmunología , Células Madre Embrionarias/trasplante , Preeclampsia/inmunología , Animales , Células Madre Embrionarias/inmunología , Femenino , Humanos , Preeclampsia/terapia , Embarazo , Trasplante de Células Madre/métodos
8.
J Cell Mol Med ; 23(2): 1581-1592, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30585395

RESUMEN

Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro-inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM-hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune-based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM-hAMSC display less severe signs of neurological dysfunction than saline-treated ones. CM-hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM-hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM-hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM-hAMSC could act by modulating inflammatory cells, and more specifically microglia.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Medios de Cultivo Condicionados/farmacología , Enfermedad de Huntington/tratamiento farmacológico , Trastornos Motores/tratamiento farmacológico , Amnios/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Sustancias Protectoras/farmacología
9.
J Cell Mol Med ; 22(2): 1202-1213, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29105277

RESUMEN

Myofibroblasts are key fibrogenic cells responsible for excessive extracellular matrix synthesis characterizing the fibrotic lesion. In liver fibrosis, myofibroblasts derive either from activation of hepatic stellate cells (HSC) and portal fibroblasts (PF), or from the activation of fibroblasts that originate from ductular epithelial cells undergoing epithelial-mesenchymal transition. Ductular cells can also indirectly promote myofibroblast generation by activating TGF-ß, the main fibrogenic growth factor, through αvß6 integrin. In addition, after liver injury, liver sinusoidal cells can lose their ability to maintain HSC quiescence, thus favouring HSC differentiation towards myofibroblasts. The amniotic membrane and epithelial cells (hAEC) derived thereof have been shown to decrease hepatic myofibroblast levels in rodents with liver fibrosis. In this study, in a rat model of liver fibrosis, we investigated the effects of hAEC on resident hepatic cells contributing to myofibroblast generation. Our data show that hAEC reduce myofibroblast numbers with a consequent reduction in fibronectin and collagen deposition. Interestingly, we show that hAEC strongly act on specific myofibroblast precursors. Specifically, hAEC reduce the activation of PF rather than HSC. In addition, hAEC target reactive ductular cells by inhibiting their proliferation and αvß6 integrin expression, with a consequent decrease in TGF-ß activation. Moreover, hAEC counteract the transition of ductular cells towards fibroblasts, while it does not affect injury-induced and fibrosis-promoting sinusoidal alterations. In conclusion, among the emerging therapeutic applications of hAEC in liver diseases, their specific action on PF and ductular cells strongly suggests their application in liver injuries involving the expansion and activation of the portal compartment.


Asunto(s)
Amnios/citología , Células Epiteliales/trasplante , Hepatocitos/patología , Cirrosis Hepática/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/patología , Células Epiteliales/citología , Transición Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/patología , Células Estrelladas Hepáticas/patología , Humanos , Hígado/patología , Ratas Wistar , Factor de Crecimiento Transformador beta/metabolismo
10.
J Cell Mol Med ; 20(1): 157-69, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26515425

RESUMEN

Pre-eclampsia (PE) is one of the most severe syndromes in human pregnancy, and the underlying mechanisms of PE have yet to be determined. Pre-eclampsia is characterized by the alteration of the immune system's activation status, an increase in inflammatory Th1/Th17/APC cells, and a decrease in Th2/Treg subsets/cytokines. Moreover, inflammatory infiltrates have been detected in the amniotic membranes of pre-eclamptic placentae, and to this date limited data are available regarding the role of amniotic membrane cells in PE. Interestingly, we and others have previously shown that human amniotic mesenchymal stromal cells (hAMSC) possess anti-inflammatory properties towards almost all immune cells described to be altered in PE. In this study we investigated whether the immunomodulatory properties of hAMSC were altered in PE. We performed a comprehensive study of cell phenotype and investigated the in vitro immunomodulatory properties of hAMSC isolated from pre-eclamptic pregnancies (PE-hAMSC), comparing them to hAMSC from normal pregnancies (N-hAMSC). We demonstrate that PE-hAMSC inhibit CD4/CD8 T-cell proliferation, suppress Th1/Th2/Th17 polarization, induce Treg and block dendritic cells and M1 differentiation switching them to M2 cells. Notably, PE-hAMSC generated a more prominent induction of Treg and higher suppression of interferon-γ when compared to N-hAMSC, and this was associated with higher transforming growth factor-ß1 secretion and PD-L2/PD-L1 expression in PE-hAMSC. In conclusion, for the first time we demonstrate that there is no intrinsic impairment of the immunomodulatory features of PE-hAMSC. Our results suggest that amniotic mesenchymal stromal cells do not contribute to the disease, but conversely, could participate in offsetting the inflammatory environment which characterizes PE.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Preeclampsia/inmunología , Amnios/patología , Estudios de Casos y Controles , Diferenciación Celular , Polaridad Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Femenino , Humanos , Inmunomodulación , Preeclampsia/patología , Embarazo , Linfocitos T/fisiología
11.
J Cell Mol Med ; 20(6): 1036-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26987908

RESUMEN

In the cell therapy scenario, efficient tracing of transplanted cells is essential for investigating cell migration and interactions with host tissues. This is fundamental to provide mechanistic insights which altogether allow for the understanding of the translational potential of placental cell therapy in the clinical setting. Mesenchymal stem/stromal cells (MSC) from human placenta are increasingly being investigated for their potential in treating patients with a variety of diseases. In this study, we investigated the feasibility of using poly (methyl methacrylate) nanoparticles (PMMA-NPs) to trace placental MSC, namely those from the amniotic membrane (hAMSC) and early chorionic villi (hCV-MSC). We report that PMMP-NPs are efficiently internalized and retained in both populations, and do not alter cell morphofunctional parameters. We observed that PMMP-NP incorporation does not alter in vitro immune modulatory capability of placental MSC, a characteristic central to their reparative/therapeutic effects in vitro. We also show that in vitro, PMMP-NP uptake is not affected by hypoxia. Interestingly, after in vivo brain ischaemia and reperfusion injury achieved by transient middle cerebral artery occlusion (tMCAo) in mice, iv hAMSC treatment resulted in significant improvement in cognitive function compared to PBS-treated tMCAo mice. Our study provides evidence that tracing placental MSC with PMMP-NPs does not alter their in vitro and in vivo functions. These observations are grounds for the use of PMMP-NPs as tools to investigate the therapeutic mechanisms of hAMSC and hCV-MSC in preclinical models of inflammatory-driven diseases.


Asunto(s)
Endocitosis , Nanopartículas/química , Placenta/citología , Polímeros/metabolismo , Amnios/citología , Animales , Diferenciación Celular , Hipoxia de la Célula , Proliferación Celular , Supervivencia Celular , Vellosidades Coriónicas/metabolismo , Femenino , Humanos , Inmunomodulación , Isquemia/patología , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Embarazo
12.
Crit Care Med ; 44(11): e1118-e1131, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27441900

RESUMEN

OBJECTIVES: To define the features of human amniotic mesenchymal stromal cell secretome and its protective properties in experimental models of acute brain injury. DESIGN: Prospective experimental study. SETTING: Laboratory research. SUBJECTS: C57Bl/6 mice. INTERVENTIONS: Mice subjected to sham or traumatic brain injury by controlled cortical impact received human amniotic mesenchymal stromal cells or phosphate-buffered saline infused intracerebroventricularly or intravenously 24 hours after injury. Organotypic cortical brain slices exposed to ischemic injury by oxygen-glucose deprivation were treated with human amniotic mesenchymal stromal cells or with their secretome (conditioned medium) in a transwell system. MEASUREMENTS AND MAIN RESULTS: Traumatic brain injured mice receiving human amniotic mesenchymal stromal cells intravenously or intracerebroventricularly showed early and lasting functional and anatomical brain protection. cortical slices injured by oxigen-glucose deprivation and treated with human amniotic mesenchymal stromal cells or conditioned medium showed comparable protective effects (neuronal rescue, promotion of M2 microglia polarization, induction of trophic factors) indicating that the exposure of human amniotic mesenchymal stromal cells to the injured tissue is not necessary for the release of bioactive factors. Using sequential size-exclusion and gel-filtration chromatography, we identified a conditioned medium subfraction, which specifically displays these highly protective properties and we found that this fraction was rich in bioactive molecules with molecular weight smaller than 700 Da. Quantitative RNA analysis and mass spectrometry-based peptidomics showed that the active factors are not proteins or RNAs. The metabolomic profiling of six metabolic classes identified a list of molecules whose abundance was selectively elevated in the active conditioned medium fraction. CONCLUSIONS: Human amniotic mesenchymal stromal cell-secreted factors protect the brain after acute injury. Importantly, a fraction rich in metabolites, and containing neither proteic nor ribonucleic molecules was protective. This study indicates the profiling of protective factors that could be useful in cell-free therapeutic approaches for acute brain injury.


Asunto(s)
Amnios/citología , Lesiones Encefálicas/prevención & control , Células Madre Mesenquimatosas/fisiología , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antígeno CD11b/metabolismo , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Regulación hacia Abajo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Estudios Prospectivos , ARN Mensajero/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
BMC Biotechnol ; 15: 55, 2015 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-26070459

RESUMEN

BACKGROUND: In order to shed light on the regenerative mechanism of mesenchymal stem cells (MSCs) in vivo, the bio-distribution profile of implanted cells using a stable and long-term tracking method is needed. We herein investigated the bio-distribution of human placental deciduas basalis derived MSCs (termed as PDB-MSCs) in nude mice after intravenous injection by carbon radioisotope labeling thymidine ((14)C-TdR), which is able to incorporate into new DNA strands during cell replication. RESULTS: The proliferation rate and radioactive emission of human PDB-MSCs after labeled with different concentrations of (14)C-TdR were measured. PDB-MSCs labeled with 1 µCi possessed high radioactivity, and the biological characteristics (i.e. morphology, colony forming ability, differentiation capabilities, karyotype and cell cycle) showed no significant changes after labeling. Thus, 1 µCi was the optimal concentration in this experimental design. In nude mice, 1 × 10(6) (14)C-TdR-labeled PDB-MSCs were injected intravenously and the organs were collected at days 1, 2, 3, 5, 30 and 180 after injection, respectively. Radiolabeled PDB-MSCs were found mainly in the lung, liver, spleen, stomach and left femur of the recipient nude mice at the whole observation period. CONCLUSIONS: This work provided solid evidence that (14)C-TdR labeling did not alter the biological characteristics of human placental MSCs, and that this labeling method has potential to decrease the signal from non-infused or dead cells for cell tracking. Therefore, this labeling technique can be utilized to quantify the infused cells after long-term follow-up in pre-clinical studies.


Asunto(s)
Radioisótopos de Carbono/farmacocinética , Rastreo Celular/métodos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Placenta/citología , Timidina/farmacocinética , Animales , Radioisótopos de Carbono/química , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Embarazo , Timidina/química , Distribución Tisular
14.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232990

RESUMEN

Lung fibrosis is a complex process, with unknown underlying mechanisms, involving various triggers, diseases and stimuli. Different cell types (epithelial cells, endothelial cells, fibroblasts and macrophages) interact dynamically through multiple signalling pathways, including biochemical/molecular and mechanical signals, such as stiffness, affecting cell function and differentiation. Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing interstitial lung disease (fILD), characterised by a notably high mortality. Unfortunately, effective treatments for advanced fILD, and especially IPF and non-IPF progressive fibrosing phenotype ILD, are still lacking. The development of pharmacological therapies faces challenges due to limited knowledge of fibrosis pathogenesis and the absence of pre-clinical models accurately representing the complex features of the disease. To address these challenges, new model systems have been developed to enhance the translatability of preclinical drug testing and bridge the gap to human clinical trials. The use of two- and three-dimensional in vitro cultures derived from healthy or diseased individuals allows for a better understanding of the underlying mechanisms responsible for lung fibrosis. Additionally, microfluidics systems, which replicate the respiratory system's physiology ex vivo, offer promising opportunities for the development of effective therapies, especially for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Células Endoteliales/patología , Progresión de la Enfermedad , Fibrosis Pulmonar Idiopática/patología , Descubrimiento de Drogas
15.
Biomater Adv ; 165: 214024, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39232353

RESUMEN

Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.


Asunto(s)
Grafito , Leucocitos Mononucleares , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Grafito/química , Grafito/farmacología , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Andamios del Tejido/química , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Monocitos/efectos de los fármacos , Monocitos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología
16.
Front Cell Dev Biol ; 12: 1411582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144254

RESUMEN

The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.

17.
Mater Today Bio ; 25: 100986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375317

RESUMEN

Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.

18.
Talanta ; 276: 126216, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761653

RESUMEN

Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.


Asunto(s)
Amnios , Vesículas Extracelulares , Células Madre Mesenquimatosas , Secretoma , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Secretoma/metabolismo , Amnios/química , Amnios/citología , Amnios/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Control de Calidad , Células Cultivadas
19.
Cell Mol Life Sci ; 69(7): 1167-78, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22130514

RESUMEN

We previously identified regulator of G-protein signaling 5 (RGS5) among several genes expressed by tumor-derived endothelial cells (EC). In this study, we provide the first in vivo/ex vivo evidence of RGS5 protein in the vasculature of ovarian carcinoma clinical specimens and its absence in human ovaries. Consistent with this, we show higher amounts of Rgs5 transcript in EC isolated from human cancers (as opposed to normal tissues) and demonstrate that expression is sustained by a milieu of factors typical of the proangiogenic tumor environment, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2). Supporting these findings, we show elevated levels of Rgs5 mRNA in the stroma from strongly (as opposed to weakly) angiogenic ovarian carcinoma xenografts and accordingly, we also show more of the protein associated to the abnormal vasculature. RGS5 protein predominantly colocalizes with the endothelium expressing platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) and to a much lesser extent with perivascular/mural cells expressing platelet-derived growth factor receptor-beta (PDGFR-ß) or alpha smooth muscle actin (αSMA). To toughen the relevance of the findings, we demonstrate RGS5 in the blood vessels of other cancer models endowed with a proangiogenic environment, such as human melanoma and renal carcinoma xenografts; to the contrary, it was undetectable in the vasculature of normal mouse tissues. RGS5 expression by the cancer vasculature triggered and retained by the proangiogenic microenvironment supports its exploitation as a novel biomarker and opens the path to explore new possibilities of therapeutic intervention aimed at targeting tumor blood vessels.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neovascularización Patológica , Proteínas RGS/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , Pronóstico , Proteínas RGS/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancers (Basel) ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980759

RESUMEN

As our understanding of mesenchymal stromal cells (MSC) has evolved, they have come to be recognized as an integral part of the tumor tissue, and the exploitability of their intrinsic features in the field of oncology has reached a standstill [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA