Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Phytoremediation ; 19(1): 23-38, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27484694

RESUMEN

Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.


Asunto(s)
Biodegradación Ambiental , Microbiota , Plantas/metabolismo , Plantas/microbiología , Contaminantes del Suelo/metabolismo
2.
Sci Rep ; 13(1): 12606, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537323

RESUMEN

To identify metal adapted bacteria equipped with traits positively influencing the growth of two hyperaccumulator plant species Arabidopsis arenosa and Arabidopsis halleri, we isolated bacteria inhabiting rhizosphere and vegetative tissues (roots, basal and stem leaves) of plants growing on two old Zn-Pb-Cd waste heaps in Boleslaw and Bukowno (S. Poland), and characterized their potential plant growth promoting (PGP) traits as well as determined metal concentrations in rhizosphere and plant tissues. To determine taxonomic position of 144 bacterial isolates, 16S rDNA Sanger sequencing was used. A metabolic characterization of isolated strains was performed in vitro using PGP tests. A. arenosa and A. halleri accumulate high amounts of Zn in their tissues, especially in stem leaves. Among in total 22 identified bacterial taxa, the highest level of the taxonomical diversity (H' = 2.01) was revealed in A. halleri basal leaf endophytes originating from Bukowno waste heap area. The 96, 98, 99, and 98% of investigated strains showed tolerant to Cd, Zn, Pb and Cu, respectively. Generally, higher percentages of bacteria could synthesize auxins, siderophores, and acetoin as well as could solubilize phosphate. Nine of waste heap origin bacterial strains were tolerant to toxic metals, showed in vitro PGP traits and are potential candidates for bioremediation.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Zinc/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Plomo/toxicidad , Plomo/metabolismo , Biodegradación Ambiental , Polonia , Bacterias/genética , Bacterias/metabolismo
3.
Microbiome ; 8(1): 127, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907632

RESUMEN

BACKGROUND: The beneficial use of nanoparticle silver or nanosilver may be confounded when its potent antimicrobial properties impact non-target members of natural microbiomes such as those present in soil or the plant rhizosphere. Agricultural soils are a likely sink for nanosilver due to its presence in agrochemicals and land-applied biosolids, but a complete assessment of nanosilver's effects on this environment is lacking because the impact on the natural soil microbiome is not known. In a study assessing the use of nanosilver for phytopathogen control with maize, we analyzed the metatranscriptome of the maize rhizosphere and observed multiple unintended effects of exposure to 100 mg kg-1 nanosilver in soil during a growth period of 117 days. RESULTS: We found several unintended effects of nanosilver which could interfere with agricultural systems in the long term. Firstly, the archaea community was negatively impacted with a more than 30% decrease in relative abundance, and as such, their involvement in nitrogen cycling and specifically, nitrification, was compromised. Secondly, certain potentially phytopathogenic fungal groups showed significantly increased abundances, possibly due to the negative effects of nanosilver on bacteria exerting natural biocontrol against these fungi as indicated by negative interactions in a network analysis. Up to 5-fold increases in relative abundance have been observed for certain possibly phytopathogenic fungal genera. Lastly, nanosilver exposure also caused a direct physiological impact on maize as illustrated by increased transcript abundance of aquaporin and phytohormone genes, overall resulting in a stress level with the potential to yield hormetically stimulated plant root growth. CONCLUSIONS: This study indicates the occurrence of significant unintended effects of nanosilver use on corn, which could turn out to be negative to crop productivity and ecosystem health in the long term. We therefore highlight the need to include the microbiome when assessing the risk associated with nano-enabled agriculture. Video Abstract.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hormesis/efectos de los fármacos , Nanopartículas del Metal , Nitrógeno/metabolismo , Plata/efectos adversos , Plata/farmacología , Transcriptoma/efectos de los fármacos , Zea mays/efectos de los fármacos , Bacterias/efectos de los fármacos , Ecosistema , Hongos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rizosfera , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/microbiología
4.
Front Plant Sci ; 9: 1134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123233

RESUMEN

Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.

5.
Front Microbiol ; 7: 341, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014254

RESUMEN

Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.

6.
Front Microbiol ; 7: 1836, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917161

RESUMEN

Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.

7.
Genome Announc ; 4(3)2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27340073

RESUMEN

We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations.

8.
Environ Sci Pollut Res Int ; 22(2): 1444-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25146122

RESUMEN

The potential use of biochar from olive mill waste for in situ remediation of metal contaminated soils was evaluated. Biochar was mixed with metal contaminated soil originating from the vicinity of an old zinc smelter. Soil-biochar mixtures were equilibrated for 30 and 90 days. At these time points, Ca(NO3)2 exchangeable metals were determined, and effects of the biochar amendment on soil toxicity were investigated using plants, bacteria, and earthworms. Bean (Phaseolus vulgaris) growth, metal content, antioxidative enzymes activities, and soluble protein contents were determined. Furthermore, effects on soil microbial communities (activity, diversity, richness) were examined using Biolog ECOplates. After 120 days of soil-biochar equilibration, effects on weight and reproduction of Eisenia foetida were evaluated. With increasing biochar application rate and equilibration period, Ca(NO3)2 exchangeable metals decreased, and growth of bean plants improved; leaf metal contents reduced, the activities of antioxidative stress enzymes decreased, and soluble protein contents increased. Soil microbial activity, richness, and diversity were augmented. Earthworm mortality lowered, and their growth and reproduction showed increasing trends.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Metales Pesados/aislamiento & purificación , Olea/química , Contaminantes del Suelo/aislamiento & purificación , Animales , Compuestos de Calcio , Metales Pesados/análisis , Metales Pesados/toxicidad , Nitratos , Oligoquetos/efectos de los fármacos , Oligoquetos/crecimiento & desarrollo , Phaseolus/química , Phaseolus/efectos de los fármacos , Phaseolus/crecimiento & desarrollo , Hojas de la Planta/química , Proteínas/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Factores de Tiempo
9.
Microb Biotechnol ; 7(4): 294-306, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24467368

RESUMEN

The presence of explosives in soils and the interaction with drought stress and nutrient limitation are among the environmental factors that severely affect plant growth on military soils. In this study, we seek to isolate and identify the cultivable bacteria of a 2,4-dinitrotoluene (DNT) contaminated soil (DS) and an adjacent grassland soil (GS) of a military training area aiming to isolate new plant growth-promoting (PGP) and 2,4-DNT-degrading strains. Metabolic profiling revealed disturbances in Ecocarbon use in the bare DS; isolation of cultivable strains revealed a lower colony-forming-unit count and a less diverse community associated with DS in comparison with GS. New 2,4-DNT-tolerant strains were identified by selective enrichments, which were further characterized by auxanography for 2,4-DNT use, resistance to drought stress, cold, nutrient starvation and PGP features. By selecting multiple beneficial PGP and abiotic stress-resistant strains, efficient 2,4-DNT-degrading consortia were composed. After inoculation, consortium UHasselt Sofie 3 with seven members belonging to Burkholderia, Variovorax, Bacillus, Pseudomonas and Ralstonia species was capable to successfully enhance root length of Arabidopsis under 2,4-DNT stress. After 9 days, doubling of main root length was observed. Our results indicate that beneficial bacteria inhabiting a disturbed environment have the potential to improve plant growth and alleviate 2,4-DNT stress.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Dinitrobencenos/metabolismo , Consorcios Microbianos , Desarrollo de la Planta , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/crecimiento & desarrollo , Biotransformación , Personal Militar , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA