Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 20(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892935

RESUMEN

Erectile dysfunction (ED) is the inability to achieve and/or maintain a penile erection sufficient for sexual satisfaction. Currently, many patients do not respond to the pharmacotherapy. The effects of a supplementation with Spirulina platensis, were evaluated in a model of ED induced by hypercaloric diet consumption. Wistar rats were divided into groups fed with standard diet (SD) or hypercaloric diet (HD) and supplemented with this alga at doses of 25, 50 or 100 mg/kg. Experimental adiposity parameters and erectile function were analyzed. In SD groups, Spirulina platensis reduced food intake, final body mass and adiposity index, and increased the total antioxidant capacity (TAC) of adipose tissue. However, no change was observed in erectile function. In the HD group, without Spirulina supplementation, a decrease in food intake was observed, in addition to an increase of final body mass, weight gain, adipose reserves, and adiposity index. Additionally, reduction in the number and increase in the latency of penile erection and adipose malondialdehyde levels, as well as a reduction in TCA was noted. Furthermore, cavernous contractility was increased, and the relaxing response was decreased. Interestingly, these deleterious effects were prevented by the algae at doses of 25, 50 and/or 100 mg/kg. Therefore, the supplementation with S. platensis prevents damages associated to a hypercaloric diet consumption and emerges as an adjuvant the prevention of ED.


Asunto(s)
Disfunción Eréctil , Spirulina , Animales , Dieta , Suplementos Dietéticos , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Disfunción Eréctil/prevención & control , Humanos , Masculino , Obesidad/etiología , Erección Peniana , Ratas , Ratas Wistar
2.
BMC Complement Altern Med ; 17(1): 514, 2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29197370

RESUMEN

BACKGROUND: Galetin 3,6-dimethyl ether (FGAL) is a flavonoid isolated from aerial parts of Piptadenia stipulacea. Previously, FGAL was shown to inhibit both carbachol- and oxytocin-induced phasic contractions in the rat uterus, which was more potent with oxytocin. Thus, in this study, we aimed to investigate the tocolytic action mechanism of FGAL on the rat uterus. METHODS: Segments of rat uterus ileum were suspended in organ bath containing modified Locke-Ringer solution at 32 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer. RESULTS: FGAL was more potent in relaxing uterus pre-contracted with oxytocin than with KCl. Additionally, FGAL shifted oxytocin-induced cumulative contractions curves to the right in a non-parallel manner, with Emax reduction, indicating a pseudo-irreversible noncompetitive antagonism of oxytocin receptors (OTR) or a downstream pathway target. Moreover, FGAL shifted CaCl2-induced cumulative contraction curves to the right in a non-parallel manner in depolarizing medium, nominally without Ca2+, with Emax reduction, suggesting the inhibition of Ca2+ influx through CaV. The relaxant potency of FGAL was reduced by CsCl, a non-selective K+ channel blocker, suggesting positive modulation of these channels. Furthermore, in presence of apamin, 4-aminopyridine, glibenclamide or 1 mM TEA+, the relaxant potency of FGAL was attenuated, indicating the participation of SKCa, KV, KATP and highlighting BKCa. Aminophylline, a non-selective phosphodiesterase (PDE) blocker, did not affect the FGAL relaxant potency, excluding the modulation of cyclic nucleotide PDEs pathway by FGAL. CONCLUSION: Tocolytic effect of FGAL on rat uterus occurs by pseudo-irreversible noncompetitive antagonism of OTR and activation of K+ channels, primarily BKCa, leading to calcium influx reduction through CaV.


Asunto(s)
Flavonoides/farmacología , Tocolíticos/farmacología , Útero/efectos de los fármacos , Animales , Cloruro de Calcio/farmacología , Fabaceae/química , Femenino , Flavonoides/química , Oxitocina/farmacología , Ratas , Ratas Wistar , Tocolíticos/química , Contracción Uterina/efectos de los fármacos
3.
BMC Complement Altern Med ; 15: 327, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26376723

RESUMEN

BACKGROUND: Xylopia frutescens Aubl. (embira, semente-de-embira or embira-vermelha), is used in folk medicine as antidiarrheal. The essential oil from its leaves (XF-EO) has been found to cause smooth muscle relaxation. Thus, the aim of this study was to investigate the spasmolytic action by which XF-EO acts on guinea pig ileum. METHODS: The components of the XF-EO were identified by gas chromatography-mass spectrometry. Segments of guinea pig ileum were suspended in organ bath containing modified Krebs solution at 37 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer coupled to an amplifier and computer. Fluorescence measurements were obtained with a microplate reader using Fluo-4. RESULTS: Forty-three constituents were identified in XF-EO, mostly mono- and sesquiterpenes. XF-EO has been found to cause relaxation on guinea pig ileum. The essential oil inhibited in a concentration-dependent manner both CCh- and histamine-induced phasic contractions, being more potent on histamine-induced contractions as well as antagonized histamine-induced cumulative contractions in a non-competitive antagonism profile. XF-EO relaxed in a concentration-dependent manner the ileum pre-contracted with KCl and histamine. Since the potency was smaller in organ pre-contracted with KCl, it was hypothesized that XF-OE would be acting as a K(+) channel positive modulator. In the presence of CsCl (non-selective K(+) channel blocker), the relaxant potency of XF-OE was not altered, indicating a non-participation of these channels. Moreover, XF-EO inhibited CaCl2-induced cumulative contractions in a depolarizing medium nominally without Ca(2+) and relaxed the ileum pre-contracted with S-(-)-Bay K8644 in a concentration-dependent manner, thus, was confirmed the inhibition of Ca(2+) influx through Cav1 by XF-EO. In cellular experiments, the viability of longitudinal layer myocytes from guinea pig ileum was not altered in the presence of XF-OE and the Fluo-4-associated fluorescence intensity in these intestinal myocytes stimulated by histamine was reduced by the essential oil, indicating a [Ca(2+)]c reduction. CONCLUSION: Spasmolytic action mechanism of XF-EO on guinea pig ileum can involve histaminergic receptor antagonism and Ca(2+) influx blockade, which results in [Ca(2+)]c reduction leading to smooth muscle relaxation.


Asunto(s)
Calcio/análisis , Íleon/efectos de los fármacos , Aceites Volátiles/farmacología , Parasimpatolíticos/farmacología , Aceites de Plantas/farmacología , Xylopia/química , Animales , Cobayas
4.
Z Naturforsch C J Biosci ; 69(11-12): 434-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25854763

RESUMEN

Galetin 3,6-dimethyl ether (FGAL), a flavonoid from the aerial parts of Piptadenia stipulacea (Benth.) Ducke, was found to exert a relaxant effect on carbachol (CCh)-pre-contracted guinea-pig trachea. Based on cumulative concentration-response curves to CCh, FGAL antagonized muscarinic receptors pseudo-irreversibly and noncompetitively, since it inhibited and shifted these curves towards higher concentrations in a nonparallel manner. In addition, FGAL was more potent in relaxing contractions induced by 18 mM as compared to 60 mM KCl (pD2 = 5:50 ±0:36 and 4.80 ±0.07, respectively), indicating the participation of K+ channels. In the presence of 10 mM tetraethylammonium (TEA+) chloride, a nonselective K+ channel blocker, the relaxant potency of FGAL was reduced (from pD2 = 5:12 ±0:07 to 4.87 ±0.02). Among several selective blockers of K+ channel subtypes, only apamin, an SKCa (small-conductance Ca2+-activated K+ channels) blocker, attenuated the relaxant potency of FGAL (pD2 = 4:85±0:06), suggesting SKCa activation. FGAL was equipotent in relaxing trachea contracted by 60 mM KCl (pD2 =4:80 ±0:07) or 10-6 M CCh (pD2 = 5:02 ±0:07), suggesting CaV (voltage-gated calcium channel), but not ROCs (receptor-operated calcium channels) participation. Furthermore, aminophylline-induced relaxation (pD2 = 4:12 ±0:06) was potentiated around 4-fold (pD2 = 4:80 ±0:44) in the presence of FGAL. Moreover, forskolininduced relaxation (pD2 = 6:51 ±0:06) was potentiated around 2.5-fold (pD2 = 6:90 ±0:05) by FGAL. Conversely, sodium nitroprusside-induced relaxation was unaffected, indicating that the AC/cAMP/PKA pathway, but not the NO pathway, may be modulated by the flavonoid. These results suggest that, in guinea-pig trachea, FGAL induces relaxation by pseudo-irreversible noncompetitive antagonism on muscarinic receptors, modulation of K+ and Ca2+ channels, as well as activation of the AC/cAMP/PKA pathway.


Asunto(s)
Flavonoides/administración & dosificación , Relajación Muscular/efectos de los fármacos , Fármacos Neuromusculares/administración & dosificación , Tráquea/efectos de los fármacos , Animales , Canales de Calcio/metabolismo , Fabaceae/química , Flavonoides/química , Cobayas , Fármacos Neuromusculares/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos , Tráquea/fisiología
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4419-4434, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38108836

RESUMEN

Asthma is a disease characterized by chronic inflammation and hyper responsiveness of airways. We aimed to assess the relaxant potential of phosphodiesterase-4 (PDE4) inhibitors N-sulfonilhidrazonic derivatives on non-asthmatic and asthmatic guinea pig trachea. Firstly, guinea pigs were sensitized and challenged with ovalbumin, and then morphological, and contractile changes were evaluated resulting from asthma, followed by evaluation of relaxant effect of derivatives on guinea pig trachea and the cAMP levels measurement by ELISA. It has been evidenced hypertrophy of airway smooth muscle, inflammatory infiltrate, and vascular abnormalities. Moreover, only sensitized tracheal rings were responsive to OVA. Contractile response to histamine, but not to carbachol, was greater in sensitized animals, however the relaxant response to aminophylline and isoprenaline were the same in non-asthmatics and asthmatics. N-sulfonilhidrazonic derivatives presented equipotent relaxant action independent of epithelium, with exception of LASSBio-1850 that presented a low efficacy (< 50%) and LASSBio-1847 with a 4-fold higher potency on asthmatics. LASSBio-1847 relaxant curve was impaired in the presence of propranolol and potentiated by isoprenaline in both groups. Furthermore, relaxation was potentiated 54- and 4-fold by forskolin in non-asthmatics and asthmatics, respectively. Likewise, LASSBio-1847 potentiated relaxant curve of aminophylline 147- and 4-fold in both groups. The PKA inhibitor H-89 impaired the relaxant potency of the derivative. Finally, LASSBio-1847 increased tracheal intracellular cAMP levels similarly to rolipram, selective PDE4 inhibitor, in both animals. LASSBio-1847 showed to be promising to relax guinea pig trachea from non-sensitized and sensitized guinea pigs by activation of ß2-adrenergic receptors/AC/cAMP pathway.


Asunto(s)
Asma , Broncodilatadores , AMP Cíclico , Modelos Animales de Enfermedad , Inhibidores de Fosfodiesterasa 4 , Tráquea , Animales , Cobayas , Inhibidores de Fosfodiesterasa 4/farmacología , Asma/tratamiento farmacológico , Asma/fisiopatología , Tráquea/efectos de los fármacos , Masculino , Broncodilatadores/farmacología , AMP Cíclico/metabolismo , Músculo Liso/efectos de los fármacos , Ovalbúmina , Relajación Muscular/efectos de los fármacos , Aminofilina/farmacología
6.
Mar Drugs ; 11(5): 1553-64, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23670534

RESUMEN

In this work, we investigated the spasmolytic effect of caulerpine, a bisindole alkaloid isolated from marine algae of the Caulerpa genus, on guinea pig ileum. Our findings indicated that caulerpine inhibited phasic contractions induced by carbachol (IC50 = 7.0 ± 1.9 × 10⁻5 M), histamine (IC50 = 1.3 ± 0.3 × 10⁻4 M) and serotonin (IC50 = 8.0 ± 1.4 × 10⁻5 M) in a non-selective manner. Furthermore, caulerpine concentration-dependently inhibited serotonin-induced cumulative contractions (pD'2 = 4.48 ± 0.08), shifting the curves to the right with Emax reduction and slope of 2.44 ± 0.21, suggesting a noncompetitive antagonism pseudo-irreversible. The alkaloid also relaxed the ileum pre-contracted by KCl (EC50 = 9.0 ± 0.9 × 10⁻5 M) and carbachol (EC50 = 4.6 ± 0.7 × 10⁻5 M) in a concentration-dependent manner. This effect was probably due to inhibition of Ca²âº influx through voltage-gated calcium channels (CaV), since caulerpine slightly inhibited the CaCl2-induced contractions in depolarizing medium without Ca²âº, shifting the curves to the right and with Emax reduction. According to these results, the spasmolytic effect of caulerpine on guinea pig ileum seems to involve inhibition of Ca²âº influx through CaV. However, other mechanisms are not discarded.


Asunto(s)
Calcio/metabolismo , Caulerpa/química , Indoles/farmacología , Parasimpatolíticos/farmacología , Animales , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Carbacol/administración & dosificación , Carbacol/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Cobayas , Histamina/administración & dosificación , Histamina/farmacología , Íleon/efectos de los fármacos , Íleon/metabolismo , Indoles/administración & dosificación , Indoles/aislamiento & purificación , Concentración 50 Inhibidora , Masculino , Contracción Muscular/efectos de los fármacos , Parasimpatolíticos/administración & dosificación , Parasimpatolíticos/aislamiento & purificación , Serotonina/administración & dosificación , Serotonina/farmacología
7.
Front Pharmacol ; 14: 1236550, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841931

RESUMEN

Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.

8.
Front Pharmacol ; 13: 895044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865945

RESUMEN

Erectile dysfunction is increasingly affecting men, from the elderly to young adults, being a sexual disorder related to the inability to generate or maintain a penile erection. This disorder is related to psychosocial factors such as anxiety, depression, and low self-esteem, to organic factors such as the presence of preexisting conditions like hypertension, diabetes and dyslipidemia. The pathophysiology of the disease is related to changes in the neurotransmission of the autonomic or the non-cholinergic non-adrenergic nervous system, as well as the release of local mediators, such as thromboxane A2 and endothelin, and hormonal action. These changes lead to impaired relaxation of cavernous smooth muscle, which reduces local blood flow and impairs penile erection. Currently, therapy is based on oral vasodilation, such as sildenafil, tadalafil, vardenafil and iodenafil, or by direct administration of these agents into the corpus cavernosum or by intraurethral route, such as alprostadil and papaverine. Despite this, studies that consolidate the understanding of its pathophysiological process contribute to the discovery of new more efficient drugs for the treatment of erectile dysfunction. In this sense, in the present work an extensive survey was carried out of the mechanisms already consolidated and the most recent ones related to the development of erectile dysfunction.

9.
Curr Neuropharmacol ; 20(10): 1834-1849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34370640

RESUMEN

Autism spectrum disorder (ASD) is a neurological condition that directly affects brain functions and can culminate in delayed intellectual development, problems in verbal communication, difficulties in social interaction, and stereotyped behaviors. Its etiology reveals a genetic basis that can be strongly influenced by socio-environmental factors. Ion channels controlled by ligand voltage-activated calcium, sodium, and potassium channels may play important roles in modulating sensory and cognitive responses, and their dysfunctions may be closely associated with neurodevelopmental disorders such as ASD. This is due to ionic flow, which is of paramount importance to maintaining physiological conditions in the central nervous system and triggers action potentials, gene expression, and cell signaling. However, since ASD is a multifactorial disease, treatment is directed only to secondary symptoms. Therefore, this research aims to gather evidence concerning the principal pathophysiological mechanisms involving ion channels in order to recognize their importance as therapeutic targets for the treatment of central and secondary ASD symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/tratamiento farmacológico , Calcio/metabolismo , Humanos , Canales Iónicos/metabolismo , Transducción de Señal
10.
Oxid Med Cell Longev ; 2021: 3260789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367461

RESUMEN

The consumption of hypercaloric diets is related to the development of obesity, favoring the etiology of gastrointestinal disorders. In this context, Spirulina platensis (SP), some blue-green algae with antioxidant action, appears as a potential therapeutic alternative to prevent obesity and associated intestinal disorders. Thus, the present study is aimed at evaluating the deleterious effects of the hypercaloric diet on the contractile and relaxing reactivity of the ileum of rats, as well as the possible preventive mechanisms of dietary supplementation with SP. Wistar rats were divided into three groups: fed a standard diet (SD), a hypercaloric diet (HCD), and/or supplemented with 25 mg/kg SP (HCD + SP25) for 8 weeks. The hypercaloric diet was effective in promoting obesity in rats, as well as decreasing potency and ileal relaxing and contractile efficacy. In contrast, dietary supplementation with SP was able to prevent some of the parameters of experimental obesity. In addition, SP prevented the reduction of intestinal reactivity, possibly due to a positive modulation of voltage-gated calcium channels (CaV) and negative regulation of muscarinic receptors (M3). Thus, food supplementation with Spirulina platensis becomes a promising alternative in the prevention of gastrointestinal diseases induced and/or aggravated by obesity.


Asunto(s)
Antioxidantes/farmacología , Canales de Calcio/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Obesidad/prevención & control , Receptor Muscarínico M3/metabolismo , Spirulina/fisiología , Animales , Canales de Calcio/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Ratas , Ratas Wistar , Receptor Muscarínico M3/genética , Spirulina/química
11.
Nutrients ; 13(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34836018

RESUMEN

Strength training increases systemic oxygen consumption, causing the excessive generation of reactive oxygen species, which in turn, provokes oxidative stress reactions and cellular processes that induce uterine contraction. The aim of this study was to evaluate the possible protective effect of Spirulina platensis (SP), an antioxidant blue algae, on the contractile and relaxation reactivity of rat uterus and the balance of oxidative stress/antioxidant defenses. Female Wistar rats were divided into sedentary (CG), trained (TG), and T + supplemented (TG50, TG100) groups. Reactivity was analyzed by AQCAD, oxidative stress was evaluated by the malondialdehyde (MDA) formation, and the antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Strength training increased contractile reactivity and decreased the pharmaco-mechanical component of relaxing reactivity in rat uterus. In addition, training decreased oxidation inhibition in the plasma and exercise increased oxidative stress in the uterine tissue; however, supplementation with algae prevented this effect and potentiated the increase in antioxidant capacity. Therefore, this study demonstrated that food supplementation prevents changes in reactivity and oxidative stress induced by strength training in a rat uterus, showing for the first time, that the uterus is a target for this exercise modality and antioxidant supplementation with S. platensis is an alternative means of preventing uterine dysfunction.


Asunto(s)
Antioxidantes/farmacología , Condicionamiento Físico Animal/efectos adversos , Spirulina , Contracción Uterina/efectos de los fármacos , Enfermedades Uterinas/prevención & control , Animales , Suplementos Dietéticos , Femenino , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Uterinas/etiología
12.
Nat Prod Res ; 35(6): 1046-1051, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31163990

RESUMEN

The essential oil of Lippia microphylla (LM-OE) presents several pharmacological activities. This work evaluates the tocolytic effect of LM-OE on rats. LM-OE inhibited phasic contractions and relaxed tonic contractions on rat uterus. Considering that nitric oxide (NO) pathway regulates uterine contraction, LM-OE potency was attenuated in the presence of NO synthase (NOS) inhibitor and this reduction was reversed in the presence of a NOS substrate. Similarly, the relaxant potency of LM-OE was reduced in the presence of soluble guanylyl cyclase (sGC) and protein kinase G (PKG) inhibitors. LM-OE also demonstrates a positive modulation of large and small conductance calcium-activated, voltage-gated and adenosine triphosphate-sensitive potassium channels and inhibited curves to CaCl2 as well as relaxed the uterus pre-contracted by S-(-)-Bay K8644, suggesting voltage-gated calcium channels type-1 (CaV1) blockade. Thus, the tocolytic effect of LM-OE on rat involves positive modulation of NO/NOS/sGC/PKG/K+-channels pathway and Ca2+ influx blockade through CaV1.[Formula: see text].


Asunto(s)
Calcio/metabolismo , Lippia/química , Óxido Nítrico/metabolismo , Aceites Volátiles/farmacología , Transducción de Señal , Tocolíticos/farmacología , Útero/efectos de los fármacos , Animales , Femenino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Oxitocina/farmacología , Canales de Potasio/metabolismo , Cloruro de Potasio/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Contracción Uterina/efectos de los fármacos , Útero/metabolismo
13.
Front Pharmacol ; 11: 1120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848741

RESUMEN

Erectile dysfunction (ED) is a prevalent condition, especially in men over 40 years old, characterized by the inability to obtain and/or maintain penile erection sufficient for satisfactory sexual intercourse. Several psychological and/or organic factors are involved in the etiopathogenesis of ED. In this context, we gathered evidence of the involvement of Large-conductance, Ca2+-activated K+ channels (BKCa), Small-conductance, Ca2+-activated K+ channels (SKCa), KCNQ-encoded voltage-dependent K+ channels (KV7), Transient Receptor Potential channels (TRP), and Calcium-activated Chloride channels (CaCC) dysfunctions on ED. In addition, the use of modulating agents of these channels are involved in relaxation of the cavernous smooth muscle cell and, consequent penile erection, suggesting that these channels are promising therapeutic targets for the treatment of erectile dysfunction.

14.
Front Pharmacol ; 11: 572574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424588

RESUMEN

Oceanapia magna Santos-Neto, Nascimento, Cavalcanti and Pinheiro sponges are distributed across tropical worldwide seas. Some studies of marine products have shown interesting activities in smooth muscle models. Hence, we assessed the effect of the ethanolic extract of Oceanapia magna. (OC-EtOH) on acute toxicity and gastrointestinal motility (in vitro and in vivo) in rodent models. On guinea pig ileum, OC-EtOH induced a concentration dependent contraction on basal tonus, which was not inhibited by atropine, but in the presence of pyrilamine or verapamil, the effect was antagonized. Contrastingly, on KCl- or histamine-induced contractions, OC-EtOH presented a transient contraction followed by a concentration-dependent relaxation. Moreover, OC-EtOH presented a relaxant profile on cumulative curves to CaCl2 and tonic contraction induced by S-(-)-BayK8644, through Cav blockade. The acute toxicity assay showed that OC-EtOH (2,000 mg/kg, p.o.) did not present any sign of toxicity in female mice. Additionally, OC-EtOH presented antidiarrheal effect in mice, increased the intestinal normal transit and reduced the castor oil-induced intestinal transit. Thus, OC-EtOH presented a dual effect on guinea pig ileum promoting contraction through activation of H1 and CaV, and relaxation through CaV blockade, besides the effect on upper gastrointestinal transit in mice, showing a potential medicinal use of this sponge in intestinal diseases such as diarrhea.

15.
Oxid Med Cell Longev ; 2020: 3293065, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685091

RESUMEN

Spirulina platensis, an important source of bioactive compounds, is a multicellular, filamentous cyanobacterium rich in high-quality proteins, vitamins, minerals, and antioxidants. Due to its nutrient composition, the alga is considered a complete food and is recognized for its anti-inflammatory, antioxidant, antiobesity, and reproprotective effects. All of which are important for prevention and treatment of organic and metabolic disorders such as obesity and erectile dysfunction. The aim of this study was to investigate the modulatory role of Spirulina platensis food supplementation and the mechanisms of action involved in reversing the damage caused by a hypercaloric diet on the erectile function of rats. The animals were divided into a standard diet group (SD, n = 5); a hypercaloric diet group (HCD, n = 5); a hypercaloric diet group supplemented with S. platensis at doses of 25 (HCD+SP25, n = 5), 50 (HCD+SP50, n = 5), and 100 mg/kg (HCD+SP100, n = 5); and a hypercaloric diet group subsequently fed a standard diet (HCD+SD, n = 5). In the rats fed a hypercaloric diet, dietary supplementation with S. platensis effectively increased the number of erections while decreasing latency to initiate penile erection. Additionally, S. platensis increases NO bioavailability, reduces inflammation by reducing the release of contractile prostanoids, enhances the relaxation effect promoted by acetylcholine (ACh), restores contractile reactivity damage and cavernous relaxation, reduces reactive oxygen species (ROS), and increases cavernous total antioxidant capacity (TAC). Food supplementation with S. platensis thus restores erectile function in obese rats, reduces production of contractile prostanoids, reduces oxidative stress, and increases NO bioavailability. Food supplementation with S. platensis thus emerges as a promising new therapeutic alternative for the treatment of erectile dysfunction as induced by obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos/normas , Disfunción Eréctil/dietoterapia , Obesidad/complicaciones , Spirulina/química , Animales , Humanos , Masculino , Ratas
16.
Front Pharmacol ; 11: 1042, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754035

RESUMEN

Leptohyptis macrostachys, previously known as Hyptis macrostachys Benth., is used in folk medicine to relieve the symptoms of asthma, cough, and bronchitis. Recently, we showed that the ethanol extract obtained from Leptohyptis macrostachys has selective spasmolytic activity on guinea pig ileum. Therefore, the aim of this study was to characterize the spasmolytic mechanism of this extract, investigated whether it presents toxicological and antidiarrheal activities. Therefore, the crude ethanolic extract of Leptohyptis macrostachys was analyzed by high-performance liquid chromatographic-diode array detection (HPLC-DAD). The spasmolytic effect was evaluated on guinea pig ileum, toxicological activity using rats and antidiarrheal activity using male and female mice. In HPLC-DAD analysis, Rosmarinic acid (5.44%) was the most abundant phenolic compound, being considered as a chemical marker. The spasmolytic potency of the extract on histamine-induced contraction was reduced in the presence of 1 mM TEA+, a selective big-conductance K+ channels blocker (BKCa). The extract produces a dose-dependent antidiarrheal activity, inhibiting equipotently defecation frequency and liquid stool formation. In addition, the extract has inhibited in a dose-dependent manner both castor oil-induced intestinal transit and intestinal fluid content. Thus, the spasmolytic activity of the extract involves positive modulation of BKCa and its antidiarrheal activity is related to inhibition of intestinal motility and secretion.

17.
Eur J Med Chem ; 204: 112492, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32717478

RESUMEN

Phosphodiesterase 4 (PDE4) inhibitors have emerged as a new strategy to treat asthma and other lung inflammatory diseases. Searching for new PDE4 inhibitors, we previously reported the discover of LASSBio-448, a sulfonamide with potential to prevent and reverse pivotal pathological features of asthma. In this paper, two novel series of sulfonamide (6a-6m) and sulfonyl hydrazone (7a-7j) analogues of LASSBio-448 have been synthetized and evaluated for selective inhibitory activity toward cAMP-specific PDE4 isoforms. From these studies, we have identified 7j (LASSBio-1632) as a new anti-asthmatic lead-candidate associated with selective inhibition of PDE4A and PDE4D isoenzymes and blockade of airway hyper-reactivity (AHR) and TNF-α production in the lung tissue. In addition, it was able to relax guinea pig trachea on non-sensitized and sensitized animals and showed great TGI permeability.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hidrazonas/química , Hidrazonas/farmacología , Animales , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidrazonas/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones
18.
Sci Rep ; 10(1): 6382, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286405

RESUMEN

The purpose of this study was to evaluate the effects of Spirulina Platensis supplementation on selected blood markers of oxidative stress, muscle damage, inflammation, and performance in trained rats. Rats (250 g - 300 g) were submitted to a strength training program (eight weeks), divided into four groups: control (GT) (trained without supplementation), trained with daily-supplementation of 50 mg/kg (GT50), 150 mg/kg (GT150) and 500 mg/kg (GT500). Training consisted of a jump protocol in PVC-cylinder containing water, with increasing load over experimental weeks. We evaluated the markers of oxidative stress (malondialdehyde - MDA and antioxidant capacity) and inflammation (C-reactive protein) at the end of the training. Among groups submitted to strength training, concentration of C-reactive protein decreased after 8 weeks of intervention in the trained group and GT500. Strength training enhanced plasma MDA concentration of malondialdehyde with supplementation of S. platensis in GT150 and GT500. In plasma analysis, strength training enhanced the percentage of oxidation inhibition, with spirulina supplementation in rates of 150 and 500 mg/kg. Spirulina supplementation for 8 weeks (in a dose-effect manner) improved antioxidant capacity as well as attenuated exercise-induced increases in ROS and inflammation. As a practical application, the use as high doses did not cause a reduction in positive physiological adaptations to exercise training. Additional studies are necessary to test the application of Spirulina Platensis in other contexts, as collective sports (basketball, football, soccer).


Asunto(s)
Antioxidantes/administración & dosificación , Suplementos Dietéticos , Estrés Oxidativo , Condicionamiento Físico Animal , Spirulina , Animales , Biomarcadores/sangre , Inflamación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/sangre
19.
Oxid Med Cell Longev ; 2019: 7838149, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31772708

RESUMEN

The possible mechanism is involved in the effects of Spirulina platensis on vascular reactivity. Animals were divided into sedentary group (SG) and sedentary groups supplemented with S. platensis at doses of 50 (SG50), 150 (SG150), and 500 mg/kg (SG500). To evaluate reactivity, cumulative concentration-response curves were constructed for phenylephrine and acetylcholine. To evaluate the involvement of the nitric oxide (NO) pathway, aorta tissue was preincubated with L-NAME and a new curve was then obtained for phenylephrine. Biochemical analyses were performed to evaluate nitrite levels, lipid peroxidation, and antioxidant activity. To contractile reactivity, only SG500 (pD2 = 5.6 ± 0.04 vs. 6.1 ± 0.06, 6.2 ± 0.02, and 6.2 ± 0.04) showed reduction in phenylephrine contractile potency. L-NAME caused a higher contractile response to phenylephrine in SG150 and SG500. To relaxation, curves for SG150 (pD2 = 7.0 ± 0.08 vs. 6.4 ± 0.06) and SG500 (pD2 = 7.3 ± 0.02 vs. 6.4 ± 0.06) were shifted to the left, more so in SG500. Nitrite was increased in SG150 and SG500. Lipid peroxidation was reduced, and oxidation inhibition was increased in all supplemented groups, indicating enhanced antioxidant activity. Chronic supplementation with S. platensis (150/500 mg/kg) caused a decrease in contractile response and increase in relaxation and nitrite levels, indicating greater NO production, due to decreased oxidative stress and increased antioxidant activity.


Asunto(s)
Antioxidantes/metabolismo , Aorta/efectos de los fármacos , Óxido Nítrico/metabolismo , Spirulina/química , Animales , Suplementos Dietéticos , Ratas
20.
Front Pharmacol ; 9: 1547, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30814952

RESUMEN

Asthma is a heterogeneous disease of the airways characterized by chronic inflammation associated with bronchial and smooth muscle hyperresponsiveness. Currently, different murine models for the study of asthma show poor bronchial hyperresponsiveness due to a scarcity of smooth muscle and large airways, resulting in a failure to reproduce smooth muscle hyperreactivity. Thus, we aimed to standardize a guinea pig model of chronic allergic lung inflammation mimicking airway smooth muscle hyperreactivity observed in asthmatics (Asth). Animals were randomly divided into a control group (Ctrl), which received saline (0.9% NaCl), and the Asth group, subjected to in vivo sensitization with ovalbumin (OVA) nebulization. Morphological analysis was performed by hematoxylin-eosin staining. Bronchial hyperresponsiveness was evaluated by nebulization time in the fifth, sixth, and seventh inhalations (NT5-7) and tracheal isometric contractions were assessed by force transducer. Total antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and protein expression by Western blot. Histologically, the Asth group developed peribronchial cellular infiltrate, epithelial hyperplasia and smooth muscle thickening. After the fourth nebulization, the Asth group developed bronchial hyperreactivity. The trachea from the Asth group contracted after in vitro stimulation with OVA, differing from the Ctrl group, which showed no response. Additionally, airway smooth muscle hyperreactivity to carbachol and histamine was observed in the Asth group only in intact epithelium preparations, but not to KCl, and this effect was associated with an augmented production of reactive oxygen species. Moreover, lung inflammation impaired the relaxant potency of isoproterenol only in intact epithelium preparations, without interfering with nifedipine, and it was found to be produced by transforming growth factor-ß negative modulation of ß adrenergic receptors and, furthermore, big-conductance Ca2+-sensitive K+ channels. These effects were also associated with increased levels of phosphatidylinositol 3-kinases but not extracellular signal-regulated kinases 1/2 or phosphorylation, and augmented α-actin content as well, explaining the increased smooth muscle mass. Furthermore, pulmonary antioxidant capacity was impaired in the Asth group. Therefore, we developed a standardized and easy-to-use, reproducible guinea pig model of lung inflammation that mimics airway smooth muscle hypercontractility, facilitating the investigation of the mechanisms of bronchial hyperresponsiveness in asthma and new therapeutic alternatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA