Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem ; 41: 116213, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33992862

RESUMEN

Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.


Asunto(s)
Diseño Asistido por Computadora , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Diseño de Fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas , 1-Naftilamina/análogos & derivados , Aminoquinolinas , Inhibidores de Cisteína Proteinasa/química , Descubrimiento de Drogas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
2.
Bioorg Med Chem ; 25(6): 1889-1900, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28215783

RESUMEN

Analogues of 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]indol-4-amine 1, a known cruzain inhibitor, were synthesized using a molecular simplification strategy. Five series of analogues were obtained: indole, pyrimidine, quinoline, aniline and pyrrole derivatives. The activity of the compounds was evaluated against the enzymes cruzain and rhodesain as well as against Trypanosoma cruzi amastigote and trypomastigote forms. The 4-aminoquinoline derivatives showed promising activity against both enzymes, with IC50 values ranging from 15 to 125µM. These derivatives were selective inhibitors for the parasitic proteases, being unable to inhibit mammalian cathepsins B and S. The most active compound against cruzain (compound 5a; IC50=15µM) is considerably more synthetically accessible than 1, while retaining its ligand efficiency. As observed for the original lead, compound 5a was shown to be a competitive enzyme inhibitor. In addition, it was also active against T. cruzi (IC50=67.7µM). Interestingly, the pyrimidine derivative 4b, although inactive in enzymatic assays, was highly active against T. cruzi (IC50=3.1µM) with remarkable selectivity index (SI=128) compared to uninfected fibroblasts. Both 5a and 4b exhibit drug-like physicochemical properties and are predicted to have a favorable ADME profile, therefore having great potential as candidates for lead optimization in the search for new drugs to treat Chagas disease.


Asunto(s)
Cisteína Endopeptidasas/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Evaluación Preclínica de Medicamentos , Análisis Espectral/métodos , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
3.
Nat Commun ; 15(1): 5230, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898025

RESUMEN

Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Productos Biológicos/química , Productos Biológicos/metabolismo , Descubrimiento de Drogas/métodos , Metabolómica/métodos , Microbiota , Metagenómica/métodos , Espectroscopía de Resonancia Magnética , Bibliotecas de Moléculas Pequeñas/química
4.
Chem Commun (Camb) ; 59(83): 12459-12462, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37782049

RESUMEN

We report here a colorimetric method for rapid detection of norovirus based on the valence-driven peptide-AuNP interactions. We engineered a peptide sequence named K1 with a cleavage sequence in between two lysine residues. The positively charged lysine groups aggregated the negatively charged nanoparticles leading to a purple color change. There was a red color when the cleavage sequence was digested by the Southampton norovirus 3C-like protease (SV3CP)-a protease involved in the life cycle of Human norovirus (HNV). The limit of detection was determined to be 320 nM in Tris buffer. We further show that the sensor has good performance in exhaled breath condensate, urine, and faecal matter. This research provides a potential easy and quick way to selectively detect HNV.


Asunto(s)
Nanopartículas del Metal , Norovirus , Humanos , Péptido Hidrolasas , Colorimetría/métodos , Norovirus/química , Lisina , Péptidos , Nanopartículas del Metal/química , Oro/química
5.
Future Med Chem ; 15(11): 959-985, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37435731

RESUMEN

Aim: Discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors using a structure-based drug discovery strategy. Materials & methods: Virtual screening employing covalent and noncovalent docking was performed to discover Mpro inhibitors, which were subsequently evaluated in biochemical and cellular assays. Results: 91 virtual hits were selected for biochemical assays, and four were confirmed as reversible inhibitors of SARS CoV-2 Mpro with IC50 values of 0.4-3 µM. They were also shown to inhibit SARS-CoV-1 Mpro and human cathepsin L. Molecular dynamics simulations indicated the stability of the Mpro inhibitor complexes and the interaction of ligands at the subsites. Conclusion: This approach led to the discovery of novel thiosemicarbazones as potent SARS-CoV-2 Mpro inhibitors.


Asunto(s)
COVID-19 , Tiosemicarbazonas , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Tiosemicarbazonas/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales
6.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343429

RESUMEN

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Asunto(s)
Enfermedad de Chagas , Tiosemicarbazonas , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Tripanocidas/farmacología , Tiosemicarbazonas/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Relación Estructura-Actividad , Enfermedad de Chagas/tratamiento farmacológico
7.
Eur J Med Chem ; 180: 191-203, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31306906

RESUMEN

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi. The current chemotherapy is based on benznidazole, and, in some countries, Nifurtimox, which is effective in the acute phase of the disease, but its efficacy in the chronic phase remains controversial. It can also cause serious side effects that lead sufferers to abandon treatment. In the present work, is reported the synthesis and trypanocidal activity of new 2-(phenylthio)ethylidene thiosemicarbazones (4-15) and 1,3-thiazoles (16-26). The cyclization of thiosemicarbazones into 1,3-thiazoles presents an improvement in the cytotoxic profile for T. cruzi parasite, denoting selective compounds. Compound 18 was identified as the most promising of all compounds tested, showing an IC50 of 2.6 µM for the trypomastigote form and a non-cytotoxic effect on mouse spleen cells, reaching a selective index of 95.1. Among the 22 compounds tested, six compounds present a better trypanocidal activity, and five compounds have an equipotent activity compared to benznidazole. Flow cytometry and ultrastructural analysis were performed and indicate that compound 18 causes parasite cell death through apoptosis and acts via an autophagic pathway.


Asunto(s)
Diseño de Fármacos , Tiazoles/farmacología , Tiosemicarbazonas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química , Tripanocidas/síntesis química , Tripanocidas/química
8.
Eur J Med Chem ; 130: 39-50, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28242550

RESUMEN

Chagas disease, caused by the kinetoplastid protozoan parasite Trypanosoma cruzi, remains a relevant cause of illness and premature death and it is estimated that 6 million to 7 million people are infected worldwide. Although chemotherapy options are limited presenting serious problems, such as low efficacy and high toxicity. T. cruzi is susceptible to thiazoles, making this class of compounds appealing for drug development. Previously, thiazoles resulted in an increase in anti-T. cruzi activity in comparison to thiosemicarbazones. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new thiazoles derivatives (3a-m and 4a-m), designed from molecular hybridization associated with non-classical bioisosterism. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity, in comparison to the corresponding thiosemicarbazones. In most cases, electron-withdrawing substituents, such as bromine, 3,4-dichloro and nitro groups, greatly increased antiparasitic activity. Specifically, new thiazoles were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting macrophages viability. These compounds were also evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these molecules induce apoptosis. In conclusion, except for compounds 3h and 3k, all thiazoles derivatives evaluated exhibited higher cytotoxic activity against the trypomastigote forms than the reference medicament benznidazole, without affecting macrophages viability. Compounds 4d and 4k were highlights, CC50 = 1.2 e 1.6 µM, respectively. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process, being considered a good starting point for the development of new anti-Chagas drug candidates.


Asunto(s)
Apoptosis/efectos de los fármacos , Tiazoles/farmacocinética , Tripanocidas/química , Trypanosoma cruzi/efectos de los fármacos , Enfermedad de Chagas/tratamiento farmacológico , Cisteína Endopeptidasas/efectos de los fármacos , Diseño de Fármacos , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/química , Tripanocidas/farmacología , Trypanosoma cruzi/citología
9.
Biomed Pharmacother ; 82: 555-60, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27470396

RESUMEN

Cancer remains a high incidence and mortality disease, causing around 8.2 million of deaths in the last year. Current chemotherapy needs to be expanded, making research for new drugs a necessary task. Immune system modulation is an emerging concept in cancer cell proliferation control. In fact, there are a number of mechanisms underlying the role immune system plays in tumor cells. In this work, we describe the structural design, synthesis, antitumor and immunomodulatory potential of 31 new 1,3-thiazole and thiosemicarbazone compounds. Cisplatin was used as anticancer drug control. Cytotoxicity against J774A.1 macrophages and antitumor activity against HT-29 and Jurkat cells was determined. These 1,3-thiazole and thiosemicarbazone compounds not only exhibited cytotoxicity in cancer cells, but were able to cause irreversible cancer cell damage by inducing necrosis and apoptosis. In addition, these compounds, especially pyridyl-thiazoles compounds, regulated immune factors such as interleukin 10 and tumor necrosis factor, possible by directing immune system in favor of modulating cancer cell proliferation. By examining their pharmacological activity, we were able to identify new potent and selective anticancer compounds.


Asunto(s)
Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Tiazoles/farmacología , Tiosemicarbazonas/farmacología , Animales , Apoptosis/efectos de los fármacos , Células HT29 , Humanos , Interleucina-10/biosíntesis , Células Jurkat , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Tiazoles/síntesis química , Tiazoles/química , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química , Factor de Necrosis Tumoral alfa/biosíntesis
10.
Eur J Med Chem ; 86: 48-59, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25147146

RESUMEN

The present work reports on the synthesis, anti-Trypanosoma cruzi activities and docking studies of a novel series of 2-(pyridin-2-yl)-1,3-thiazoles derived from 2-pyridine thiosemicarbazone. The majority of these compounds are potent cruzain inhibitors and showed excellent inhibition on the trypomastigote form of the parasite, and the resulting structure-activity relationships are discussed. Together, these data present a novel series of thiazolyl hydrazones with potential effects against Chagas disease and they could be important leads in continuing development against Chagas disease.


Asunto(s)
Diseño de Fármacos , Piridinas/farmacología , Tiazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Tripanocidas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA