Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 21(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37504942

RESUMEN

Microalgae attract interest worldwide due to their potential for several applications. Scenedesmus is one of the first in vitro cultured algae due to their rapid growth and handling easiness. Within this genus, cells exhibit a highly resistant wall and propagate both auto- and heterotrophically. The main goal of the present work is to find scalable ways to produce a highly concentrated biomass of Scenedesmus rubescens in heterotrophic conditions. Scenedesmus rubescens growth was improved at the lab-scale by 3.2-fold (from 4.1 to 13 g/L of dry weight) through medium optimization by response surface methodology. Afterwards, scale-up was evaluated in 7 L stirred-tank reactor under fed-batch operation. Then, the optimized medium resulted in an overall productivity of 8.63 g/L/day and a maximum biomass concentration of 69.5 g/L. S. rubescens protein content achieved approximately 31% of dry weight, similar to the protein content of Chlorella vulgaris in heterotrophy.


Asunto(s)
Chlorella vulgaris , Microalgas , Scenedesmus , Procesos Heterotróficos , Scenedesmus/metabolismo , Biomasa , Microalgas/metabolismo
2.
Mar Drugs ; 19(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670628

RESUMEN

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


Asunto(s)
Ácidos Docosahexaenoicos/biosíntesis , Ácido Eicosapentaenoico/biosíntesis , Microalgas/metabolismo , Alimentación Animal , Animales , Acuicultura , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Industria de Alimentos , Humanos
3.
Microorganisms ; 10(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296336

RESUMEN

Vibriosis, an often-fatal disease induced by pathogenic members of the Vibrionaceae family, causes severe economic losses in aquacultures. To mitigate/avoid vibriosis outbursts, it is vital to detect and quantify these pathogens as early as possible. However, standard microbiological methods are time-consuming and often underestimate cell counts, which calls for the development of valid alternatives. In this study, real-time polymerase chain reaction (qPCR) was employed to detect the pathogenic species Vibrio alginolyticus, Listonella anguillara, and Vibrio harveyi using a new primer pair targeting the groEL gene. In addition, the DNA extraction efficiency of three methods, two commercial kits and the boiling method, was compared. The most efficient method was the DNeasy Blood and Tissue kit, with a detection limit ranging between 154 and 600 CFU mL-1 in the case of V. alginolyticus and L. anguillara, and 48 CFU mL-1 for V. harveyi. Thus, this study presents the development and evaluation of a method for the early quantification of all three species in saline suspensions. However, the results obtained by spiking a microalgae sample with V. harveyi emphasize the importance of adjusting the DNA control's standard curve to the relevant extraction matrices, as it affects the DNA extraction efficiency and may hamper an accurate quantification with qPCR.

4.
Foods ; 11(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35804686

RESUMEN

Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.

5.
J Food Biochem ; 43(8): e12911, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31368540

RESUMEN

A network of components from different metabolic pathways is the building scaffold of an indispensable compound in the human organism-vitamin B12 . The biosynthesis of this compound is restricted to a limited number of representatives of bacteria and archaea, while vitamin B12 -dependent enzymes are spread through several domains of life. Different attempts have been performed to increase vitamin B12 levels in dietary products, particularly in vegetarian and vegan dietary regimes. The integration of vitamin B12 in microalgae through symbiosis with microorganisms generally recognized as safe, for example the probiotic Lactobacillus reuteri, can even increase the nutritional value of the microalgal biomass. This study reviews the microbial production of vitamin B12 based on genetic analyses and chemical studies. Recent genetic approaches are focused, particularly potential metabolic engineering targets to increase vitamin B12 production. The bioincorporation of vitamin B12 in microalgae as an attempt to provide a superfood is also reviewed. PRACTICAL APPLICATIONS: Novel food habits (i.e., vegan lifestyle) may lack relevant nutrients, including vitamin B12 . Therefore, there is an increased demand for dietary products rich in vitamin B12 . Of potential interest is the provision of microbial-based superfood rich in numerous nutrients, including this vitamin. This manuscript provides an in-depth and timely overview on vitamin B12 biosynthesis and the major advances on metabolic engineering for improved vitamin B12 production by probiotic bacteria and other microorganisms generally recognized as safe. A relevant advance would result from the bioincorporation of vitamin B12 in alternative microorganisms (non-vitamin B12 producers) increasingly recognized as superfood, that is microalgae.


Asunto(s)
Microalgas/metabolismo , Vitamina B 12/biosíntesis , Animales , Tecnología de Alimentos , Fenómenos Fisiológicos de la Nutrición , Vitamina B 12/química
6.
Sci Rep ; 8(1): 10269, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980726

RESUMEN

We hypothesize that whole microalga biomass is a natural rumen-protected source of eicosapentaenoic acid (EPA, 20:5n-3) for ruminants. To test our hypothesis, we studied the ruminal biohydrogenation of EPA from two microalgae, Nannochloropsis oceanica and Phaeodactylum tricornutum using in vitro incubations with rumen fluid. A total mixed ration was incubated with: no EPA (control), EPA as free-fatty acid, N. oceanica spray-dried (SD), N. oceanica freeze-dried (FD), or P. tricornutum FD. The kinetics of EPA disappearance and of products formed during the 24 hours of incubation were evaluated, and complemented by deuterated-EPA incubation. Results showed that EPA metabolism from the N. oceanica was remarkably reduced compared with the P. tricornutum and free-EPA, and this reduction was even more effective with the N. oceanica FD. Our data also indicates that neither feed dry matter disappearance nor rumen microbial markers (branched-chain fatty acids and dimethyl acetals) were affected by EPA-sources. We reported for the first time the kinetics of EPA biohydrogenation class products and the unequivocal formation of 20:0 from EPA. Overall, N. oceanica shows a strong potential to be used as a natural dietary source of EPA to ruminants, nevertheless further studies are needed to verify its protection in vivo.


Asunto(s)
Ácido Eicosapentaenoico/análisis , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Rumen/metabolismo , Rumiantes/metabolismo , Animales , Biomasa , Dieta , Hidrogenación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA