RESUMEN
BACKGROUND: Immunotherapy is revolutionising the treatment of patients diagnosed with melanoma and other cancers. The first immune checkpoint inhibitor, ipilimumab (targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)), showed a survival advantage over standard chemotherapy. Subsequently the anti-programmed cell death protein 1 (PD-1) antibodies, nivolumab and pembrolizumab were shown to be more effective than ipilimumab. Ipilimumab combined with nivolumab gives an incremental gain in overall survival compared with nivolumab alone but increases the risk of severe, potentially life-threatening toxicities. In contrast to ipilimumab monotherapy, anti-PD-1 antibodies are licensed to be continued until disease progression. Follow-up of patients recruited to the first trials evaluating 2 years of pembrolizumab showed that three-quarters of responding patients continue responding after stopping treatment. Suggestive of early response, we hypothesised that continuing anti-PD-1 treatment beyond 1 year in progression-free patients may be unnecessary and so designed the DANTE trial. METHODS: DANTE is a multicentre, randomised, phase III, non-inferiority trial to evaluate the duration of anti-PD-1 therapy in patients with metastatic (unresectable stage III and stage IV) melanoma. It uses a two-stage recruitment strategy, registering patients before they complete 1 year of first-line anti-PD-1 +/- CTLA-4 therapy and randomising eligible patients who have received 12 months of treatment and are progression-free at 1 year. At randomisation, 1208 patients are assigned (1:1) to either 1) continue anti-PD-1 treatment until disease progression/ unacceptable toxicity/ for at least 2 years in the absence of disease progression/ unacceptable toxicity or 2) to stop treatment. Randomisation stratifies for baseline prognostic factors. The primary outcome is progression-free survival at 3, 6, 9 and 12 months and then, 6-monthly for up to 4-years. Secondary outcomes collected at all timepoints include overall survival, response-rate and duration and safety, with quality of life and cost-effectiveness outcomes collected 3-monthly for up to 18-months. Sub-studies include a qualitative analysis of patient acceptance of randomisation and sample collection to inform future translational studies into response/ toxicity biomarkers. DISCUSSION: DANTE is a unique prospective trial investigating the optimal duration of anti-PD-1 therapy in metastatic melanoma patients. Outcomes will inform future use of these high burden drugs. TRIAL REGISTRATION: ISRCTN15837212 , 31 July 2018.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/uso terapéutico , Anticuerpos Monoclonales/farmacología , Humanos , Calidad de VidaRESUMEN
BACKGROUND: A substantial number of melanoma patients develop local or metastatic recurrence, and early detection of these is vital to maximise benefit from new therapies such as inhibitors of BRAF and MEK, or immune checkpoints. This study explored the use of novel DNA copy-number profiles in circulating cell-free DNA (cfDNA) as a potential biomarker of active disease and survival. PATIENTS AND METHODS: Melanoma patients were recruited from oncology and dermatology clinics in Sheffield, UK, and cfDNA was isolated from stored blood plasma. Using low-coverage whole-genome sequencing, we created copy-number profiles from cfDNA from 83 melanoma patients, 44 of whom had active disease. We used scoring algorithms to summarize copy-number aberrations and investigated their utility in multivariable logistic and Cox regression analyses. RESULTS: The copy-number aberration score (CNAS) was a good discriminator of active disease (odds ratio, 3.1; 95% CI, 1.5-6.2; P = 0.002), and CNAS above or below the 75th percentile remained a significant discriminator in multivariable analysis for active disease (P = 0.019, with area under ROC curve of 0.90). Additionally, mortality was higher in those with CNASs above the 75th percentile than in those with lower scores (HR, 3.4; 95% CI, 1.5-7.9; P = 0.005), adjusting for stage of disease, disease status (active or resected), BRAF status, and cfDNA concentration. CONCLUSIONS: This study demonstrates the potential of a de novo approach utilizing copy-number profiling of cfDNA as a biomarker of active disease and survival in melanoma. Longitudinal analysis of copy-number profiles as an early marker of relapsed disease is warranted.
Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Variaciones en el Número de Copia de ADN , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Estudios de Factibilidad , Humanos , Melanoma/genética , Melanoma/cirugía , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/cirugía , Análisis de SupervivenciaRESUMEN
Over a third of patients with lung cancer will develop bone metastases during the course of their disease, resulting in symptoms of pain and immobility, and skeletal-related events (SREs) such as fracture, hypercalcaemia, surgery or radiotherapy to bones, and malignant spinal cord compression. These reduce quality of life and increase mortality. Preclinical research has identified the interactions between tumour cells and bone that are key to tumour cell survival and associated osteolysis. These data have led to the development of drugs to prevent osteoclast-mediated bone breakdown, such as zoledronic acid and denosumab, which are now licensed for use in patients with bone metastases from solid tumours. Both zoledronic acid and denosumab reduce the risk of SREs and increase time to first SRE, with minimal side effects. In addition, denosumab improved survival in patients with lung cancer compared with zoledronic acid. Ongoing trials are testing whether these drugs can prevent the development of bone metastases from lung cancer. New bone-targeted agents showing promise in breast and prostate cancer include radium-223, cabozantinib and Src inhibitors. These agents require further evaluation in patients with lung cancer.
RESUMEN
The development of targeted therapies in lung cancer (mainly non-small cell lung cancer) has led to improvement in clinical outcomes and a more personalized approach to the management of these patients. This article discusses the main categories of novel targeted agents and the evidence behind their use.