Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Brain Behav Immun ; 97: 260-274, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390806

RESUMEN

Zika virus (ZIKV) has the ability to cross placental and brain barriers, causing congenital malformations in neonates and neurological disorders in adults. However, the pathogenic mechanisms of ZIKV-induced neurological complications in adults and congenital malformations are still not fully understood. Gas6 is a soluble TAM receptor ligand able to promote flavivirus internalization and downregulation of immune responses. Here we demonstrate that there is a correlation between ZIKV neurological complications with higher Gas6 levels and the downregulation of genes associated with anti-viral response, as type I IFN due to Socs1 upregulation. Also, Gas6 gamma-carboxylation is essential for ZIKV invasion and replication in monocytes, the main source of this protein, which was inhibited by warfarin. Conversely, Gas6 facilitates ZIKV replication in adult immunocompetent mice and enabled susceptibility to transplacental infection. Our data indicate that ZIKV promotes the upregulation of its ligand Gas6, which contributes to viral infectivity and drives the development of severe adverse outcomes during ZIKV infection.


Asunto(s)
Enfermedades del Sistema Nervioso , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Ratones , Placenta , Embarazo , Replicación Viral , Infección por el Virus Zika/complicaciones
2.
FASEB J ; 32(8): 4470-4481, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29558201

RESUMEN

Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.


Asunto(s)
Encéfalo/metabolismo , Hipoxia/metabolismo , Quinurenina/metabolismo , Malaria Cerebral/metabolismo , Oxígeno/metabolismo , Animales , Circulación Cerebrovascular/fisiología , Células Endoteliales/metabolismo , Femenino , Oxigenoterapia Hiperbárica/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Microcirculación/fisiología
3.
Malar J ; 17(1): 401, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382855

RESUMEN

BACKGROUND: The genetic diversity of malaria antigens often results in allele variant-specific immunity, imposing a great challenge to vaccine development. Rhoptry Neck Protein 2 (PvRON2) is a blood-stage antigen that plays a key role during the erythrocyte invasion of Plasmodium vivax. This study investigates the genetic diversity of PvRON2 and the naturally acquired immune response to P. vivax isolates. RESULTS: Here, the genetic diversity of PvRON21828-2080 and the naturally acquired humoral immune response against PvRON21828-2080 in infected and non-infected individuals from a vivax malaria endemic area in Brazil was reported. The diversity analysis of PvRON21828-2080 revealed that the protein is conserved in isolates in Brazil and worldwide. A total of 18 (19%) patients had IgG antibodies to PvRON21828-2080. Additionally, the analysis of the antibody response in individuals who were not acutely infected with malaria, but had been infected with malaria in the past indicated that 32 patients (33%) exhibited an IgG immune response against PvRON2. CONCLUSIONS: PvRON2 was conserved among the studied isolates. The presence of naturally acquired antibodies to this protein in the absence of the disease suggests that PvRON2 induces a long-term antibody response. These results indicate that PvRON2 is a potential malaria vaccine candidate.


Asunto(s)
Variación Genética , Inmunidad Humoral , Malaria Vivax/inmunología , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Protozoarias/inmunología , Análisis de Secuencia de ADN
4.
Exp Mol Pathol ; 99(3): 409-15, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26321244

RESUMEN

Fucosylated glycans synthesized by α1,3/4-fucosyltransferase (FUT3) enzyme play an important role in breast cancer prognosis and metastasis, being involved in the binding of circulating tumor cells to the endothelium and being related to tumor stage, metastatic potential and chemoresistance. Despite the pro-tumor action of this enzyme, studies have demonstrated its role in natural killer-induced cytotoxicity through the recognition of sialyl Lewis X by C-type lectin receptors and through extrinsic apoptosis pathway triggered by Apo2L-TRAIL. This study aimed to investigate the expression pattern of FUT3 in invasive breast carcinoma (IDC) from patients of Pernambuco state, Northeast of Brazil, and genotype FUT3 promoter region to identify possible SNPs that could be associated with variations in FUT3 expression. Immunohistochemistry assay was used to access the FUT3 expression in normal (n=11) and tumor tissues (n=85). DNA sequencing was performed to genotype the FUT3 promoter region in patients with IDC (n=109) and healthy controls (n=110). Our results demonstrated that the absence of FUT3 enzyme is related to breast's IDC. The non-expression of FUT3 was more frequent in larger lesions and also in HER2 negative IDC tumors. Genomic analysis showed that two variations localized in FUT3 promoter region are possibly associated with IDC. Our results suggest that minor allele T of SNP rs73920070 (-6933 C>T) confers protection whereas minor allele T of SNP rs2306969 (-6951 C>T) triggers to susceptibility to IDC in the population of Pernambuco state, Northeast of Brazil.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Fucosiltransferasas/genética , Regulación Neoplásica de la Expresión Génica/genética , Regiones Promotoras Genéticas , Brasil , Femenino , Fucosiltransferasas/metabolismo , Humanos , Inmunohistoquímica/métodos , Antígeno Lewis X/metabolismo
5.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158220

RESUMEN

The malaria parasite Plasmodium vivax remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether P. vivax strain-transcendent immunity can be achieved by repeated infection in Aotus monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection. IgG levels based on P. vivax lysate ELISA and protein microarray increased with repeated infections and correlated with the level of homologous protection. Parasite transcriptional profiles provided no evidence of major antigenic switching upon homologous or heterologous challenge. However, we observed significant sequence diversity and transcriptional differences in the P. vivax core gene repertoire between the two strains used in the study, suggesting that partial protection upon heterologous challenge is due to molecular differences between strains rather than immune evasion by antigenic switching. Our study demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P. vivax malaria vaccines.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Malaria , Animales , Humanos , Malaria Vivax/prevención & control , Malaria Vivax/parasitología , Aotidae , Haplorrinos
6.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916164

RESUMEN

The malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor ap2-g, is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission. We examine markers of host immunity and metabolism, and markers of parasite growth and transmission investment. We find that inflammatory responses associated with reduced plasma lysophosphatidylcholine levels are associated with markers of increased investment in parasite sexual reproduction (i.e. transmission investment) and reduced growth (i.e. asexual replication). This association becomes stronger with falling transmission and suggests that parasites can rapidly respond to the within-host environment, which in turn is subject to changing transmission.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Niño , Humanos , Plasmodium falciparum/fisiología , Malaria/parasitología , Reproducción , Adaptación Fisiológica , Malaria Falciparum/parasitología
7.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34581622

RESUMEN

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , COVID-19/genética , COVID-19/fisiopatología , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/fisiología , Regiones no Traducidas 5' , Células A549 , Animales , COVID-19/enzimología , COVID-19/inmunología , Quirópteros/genética , Quirópteros/virología , Coronaviridae/enzimología , Coronaviridae/genética , Coronaviridae/fisiología , Endorribonucleasas/metabolismo , Humanos , Interferones/inmunología , Isoenzimas/genética , Isoenzimas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo de Nucleótido Simple , Prenilación de Proteína , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Viral/química , ARN Viral/genética , Retroelementos , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Replicación Viral
8.
Trends Parasitol ; 36(5): 447-458, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32298632

RESUMEN

Estimation of Plasmodium vivax biomass based on circulating biomarkers indicates the existence of a predominant biomass outside of the circulation that is not captured by peripheral parasitemia, in particular in patients with complicated outcomes. A series of recent studies have suggested that the hematopoietic niche of the bone marrow (BM) is a major reservoir for parasite replication and the development of transmission stages. However, significant knowledge gaps remain in our understanding of host-parasite interactions, pathophysiology, and the implications for treatment and diagnosis of such a reservoir. Here, we discuss the current status of this emerging research field in the context of P. vivax.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Biomasa , Médula Ósea/inmunología , Médula Ósea/parasitología , Hematopoyesis/inmunología , Humanos , Malaria Vivax/transmisión , Plasmodium vivax/fisiología , Investigación/tendencias , Reticulocitos/inmunología , Reticulocitos/parasitología
9.
Front Physiol ; 11: 172, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174845

RESUMEN

Increasing evidence has highlighted the role of tubule-interstitial injury (TII) as a vital step in the pathogenesis of acute kidney injury (AKI). Incomplete repair of TII during AKI could lead to the development of chronic kidney disease. Changes in albumin endocytosis in proximal tubule epithelial cells (PTECs) is linked to the development of TII. In this context, interleukin (IL)-4 has been shown to be an important factor in modulating recovery of TII. We have studied the possible role of IL-4 in TII induced by albumin overload. A subclinical AKI model characterized by albumin overload in the proximal tubule was used, without changing glomerular function. Four groups were generated: (1) CONT, wild-type mice treated with saline; (2) BSA, wild-type mice treated with 10 g/kg/day bovine serum albumin (BSA); (3) KO, IL4Rα-/- mice treated with saline; and (4) KO + BSA, IL4Rα-/- mice treated with BSA. As reported previously, mice in the BSA group developed TII without changes in glomerular function. The following parameters were increased in the KO + BSA group compared with the BSA group: (1) tubular injury score; (2) urinary γ-glutamyltransferase; (3) CD4+ T cells, dendritic cells, macrophages, and neutrophils are associated with increases in renal IL-6, IL-17, and transforming growth factor ß. A decrease in M2-subtype macrophages associated with a decrease in collagen deposition was observed. Using LLC-PK1 cells, a model of PTECs, we observed that (1) these cells express IL-4 receptor α chain associated with activation of the JAK3/STAT6 pathway; (2) IL-4 alone did not change albumin endocytosis but did reverse the inhibitory effect of higher albumin concentration. This effect was abolished by JAK3 inhibitor. A further increase in urinary protein and creatinine levels was observed in the KO + BSA group compared with the BSA group, but not compared with the CONT group. These observations indicate that IL-4 has a protective role in the development of TII induced by albumin overload that is correlated with modulation of the pro-inflammatory response. We propose that megalin-mediated albumin endocytosis in PTECs could work as a sensor, transducer, and target during the genesis of TII.

10.
PLoS Negl Trop Dis ; 14(7): e0007656, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32687542

RESUMEN

Platelets drive endothelial cell activation in many diseases. However, if this occurs in Plasmodium vivax malaria is unclear. As platelets have been reported to be activated and to play a role in inflammatory response during malaria, we hypothesized that this would correlate with endothelial alterations during acute illness. We performed platelet flow cytometry of PAC-1 and P-selectin. We measured platelet markers (CXCL4, CD40L, P-selectin, Thrombopoietin, IL-11) and endothelial activation markers (ICAM-1, von Willebrand Factor and E-selectin) in plasma with a multiplex-based assay. The values of each mediator were used to generate heatmaps, K-means clustering and Principal Component analysis. In addition, we determined pair-wise Pearson's correlation coefficients to generate correlation networks. Platelet counts were reduced, and mean platelet volume increased in malaria patients. The activation of circulating platelets in flow cytometry did not differ between patients and controls. CD40L levels (Median [IQ]: 517 [406-651] vs. 1029 [732-1267] pg/mL, P = 0.0001) were significantly higher in patients, while P-selectin and CXCL4 showed a nonsignificant trend towards higher levels in patients. The network correlation approach demonstrated the correlation between markers of platelet and endothelial activation, and the heatmaps revealed a distinct pattern of activation in two subsets of P. vivax patients when compared to controls. Although absolute platelet activation was not strong in uncomplicated vivax malaria, markers of platelet activity and production were correlated with higher endothelial cell activation, especially in a specific subset of patients.


Asunto(s)
Plaquetas/citología , Malaria Vivax/sangre , Adulto , Plaquetas/metabolismo , Ligando de CD40/genética , Ligando de CD40/metabolismo , Selectina E/genética , Selectina E/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Malaria Vivax/genética , Malaria Vivax/metabolismo , Masculino , Selectina-P/genética , Selectina-P/metabolismo , Activación Plaquetaria , Recuento de Plaquetas , Adulto Joven
11.
PLoS Negl Trop Dis ; 14(7): e0008471, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32639964

RESUMEN

In Brazil, Plasmodium vivax infection accounts for around 80% of malaria cases. This infection has a substantial impact on the productivity of the local population as the course of the disease is usually prolonged and the development of acquired immunity in endemic areas takes several years. The recent emergence of drug-resistant strains has intensified research on alternative control methods such as vaccines. There is currently no effective available vaccine against malaria; however, numerous candidates have been studied in the past several years. One of the leading candidates is apical membrane antigen 1 (AMA1). This protein is involved in the invasion of Apicomplexa parasites into host cells, participating in the formation of a moving junction. Understanding how the genetic diversity of an antigen influences the immune response is highly important for vaccine development. In this study, we analyzed the diversity of AMA1 from Brazilian P. vivax isolates and 19 haplotypes of P. vivax were found. Among those sequences, 33 nonsynonymous PvAMA1 amino acid sites were identified, whereas 20 of these sites were determined to be located in predicted B-cell epitopes. Nonsynonymous mutations were evaluated for their influence on the immune recognition of these antigens. Two distinct haplotypes, 5 and 16, were expressed and evaluated for reactivity in individuals from northern Brazil. Both PvAMA1 variants were reactive. Moreover, the IgG antibody response to these two PvAMA1 variants was analyzed in an exposed but noninfected population from a P. vivax endemic area. Interestingly, over 40% of this population had antibodies recognizing both variants. These results have implications for the design of a vaccine based on a polymorphic antigen.


Asunto(s)
Antígenos de Protozoos/genética , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Proteínas de la Membrana/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Dicroismo Circular , ADN Protozoario/genética , Epítopos de Linfocito B , Haplotipos , Humanos , Malaria Vivax/epidemiología , Mutación , Plasmodium vivax/inmunología , Conformación Proteica , Proteínas Recombinantes
12.
PLoS One ; 14(4): e0215871, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31002704

RESUMEN

Tubule-interstitial injury (TII) is a critical step in the progression of renal disease. It has been proposed that changes in proximal tubule (PT) albumin endocytosis plays an important role in the development of TII. Some reports have shown protective effects of lithium on kidney injury animal models that was correlated to proteinuria. We tested the hypothesis that lithium treatment ameliorates the development of TII due to changes in albumin endocytosis. Two experimental models were used: (1) TII induced by albumin overload in an animal model; (2) LLC-PK1 cells, a PT cell line. Lithium treatment ameliorates TII induced by albumin overload measured by (1) proteinuria; (2) collagen deposition; (3) area of tubule-interstitial space, and (4) macrophage infiltration. Lithium treatment increased mTORC2 activity leading to the phosphorylation of protein kinase B (PKB) at Ser473 and its activation. This mechanism enhanced albumin endocytosis in PT cells, which decreased the proteinuria observed in TII induced by albumin overload. This effect did not involve changes in the expression of megalin, a PT albumin receptor. In addition, activation of this pathway decreased apoptosis in LLC-PK1 cells, a PT cell line, induced by higher albumin concentration, similar to that found in pathophysiologic conditions. Our results indicate that the protective role of lithium treatment on TII induced by albumin overload involves an increase in PT albumin endocytosis due to activation of the mTORC2/PKB pathway. These results open new possibilities in understanding the effects of lithium on the progression of renal disease.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Carbonato de Litio/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Sustancias Protectoras/farmacología , Proteinuria/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Albúminas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica , Humanos , Túbulos Renales Proximales/lesiones , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/agonistas , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteinuria/metabolismo , Proteinuria/fisiopatología , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
13.
J Leukoc Biol ; 103(4): 657-670, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29345368

RESUMEN

Acute lung injury (ALI) models are characterized by neutrophil accumulation, tissue damage, alteration of the alveolar capillary membrane, and physiological dysfunction. Lipoxin A4  (LXA4 ) is an anti-inflammatory eicosanoid that was demonstrated to attenuate lipopolysaccharide-induced ALI. Experimental models of severe malaria can be associated with lung injury. However, to date, a putative effect of LXA4  on malaria (M)-induced ALI has not been addressed. In this study, we evaluated whether LXA4 exerts an effect on M-ALI. Male C57BL/6 mice were randomly assigned to the following five groups: noninfected; saline-treated Plasmodium berghei-infected; LXA4 -pretreated P. berghei-infected (LXA4  administered 1 h before infection and daily, from days 0 to 5 postinfection), LXA4 - and LXA4 receptor antagonist BOC-2-pretreated P. berghei-infected; and LXA4 -posttreated P. berghei-infected (LXA4  administered from days 3 to 5 postinfection). By day 6, pretreatment or posttreatment with LXA4  ameliorate lung mechanic dysfunction reduced alveolar collapse, thickening and interstitial edema; impaired neutrophil accumulation in the pulmonary tissue and blood; and reduced the systemic production of CXCL1. Additionally, in vitro treatment with LXA4 prevented neutrophils from migrating toward plasma collected from P. berghei-infected mice. LXA4  also impaired neutrophil cytoskeleton remodeling by inhibiting F-actin polarization. Ex vivo analysis showed that neutrophils from pretreated and posttreated mice were unable to migrate. In conclusion, we demonstrated that LXA4  exerted therapeutic effects in malaria-induced ALI by inhibiting lung dysfunction, tissue injury, and neutrophil accumulation in lung as well as in peripheral blood. Furthermore, LXA4 impaired the migratory ability of P. berghei-infected mice neutrophils.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Movimiento Celular , Lipoxinas/uso terapéutico , Malaria/complicaciones , Neutrófilos/inmunología , Plasmodium berghei/patogenicidad , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/parasitología , Animales , Células Cultivadas , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Sci Rep ; 6: 35997, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782175

RESUMEN

Angiotensin II (Ang II) and its receptor AT1 (AT1R), an important effector axis of renin-angiotensin system (RAS), have been demonstrated to regulate T-cell responses. However, these studies characterized Ang II and AT1R effects using pharmacological tools, which do not target only Ang II/AT1R axis. The specific role of AT1R expressed by antigen-specific CD8+ T cells is unknown. Then we immunized transgenic mice expressing a T-cell receptor specific for SIINFEKL epitope (OT-I mice) with sporozoites of the rodent malaria parasite Plasmodium berghei expressing the cytotoxic epitope SIINFEKL. Early priming events after immunization were not affected but the expansion and contraction of AT1R-deficient (AT1R-/-) OT-I cells was decreased. Moreover, they seemed more activated, express higher levels of CTLA-4, PD-1, LAG-3, and have decreased functional capacity during the effector phase. Memory AT1R-/- OT-I cells exhibited higher IL-7Rα expression, activation, and exhaustion phenotypes but less cytotoxic capacity. Importantly, AT1R-/- OT-I cells show better control of blood parasitemia burden and ameliorate mice survival during lethal disease induced by blood-stage malaria. Our study reveals that AT1R in antigen-specific CD8+ T cells regulates expansion, differentiation, and function during effector and memory phases of the response against Plasmodium, which could apply to different infectious agents.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Receptor de Angiotensina Tipo 1/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Citotoxicidad Inmunológica , Inmunización , Epítopos Inmunodominantes/genética , Memoria Inmunológica , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/inmunología , Fragmentos de Péptidos/inmunología , Plasmodium berghei/inmunología , Plasmodium berghei/patogenicidad , Receptor de Angiotensina Tipo 1/deficiencia , Receptor de Angiotensina Tipo 1/genética , Esporozoítos/inmunología , Esporozoítos/patogenicidad
16.
PLoS One ; 11(1): e0147785, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26820468

RESUMEN

Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2) enzymes. This enzyme has been identified in several organs, including the kidney. However, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear. We used mice lacking the gene encoding GV sPLA2 (Pla2g5-/-) and wild-type breeding pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine was collected for biochemical assays. Kidney samples were evaluated for glomerular morphology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We observed that plasma creatinine levels were increased in Pla2g5-/- mice following by a decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5-/- mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa+) were also increased in Pla2g5-/- mice. The increased FENa+ observed in Pla2g5-/- mice was correlated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney from Pla2g5-/- mice showed accumulation of matrix in corticomedullary glomeruli and tubulointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular cell function and integrity, promoting sodium retention through increased cortical (Na+ + K+)-ATPase expression and activity.


Asunto(s)
Fosfolipasas A2 Grupo V/fisiología , Túbulos Renales Distales/enzimología , Riñón/enzimología , Sodio/metabolismo , Animales , Homeostasis , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-26779452

RESUMEN

Malaria is a worldwide health problem leading the death of millions of people. The disease is induced by different species of protozoa parasites from the genus Plasmodium. In humans, Plasmodium falciparum is the most dangerous species responsible for severe disease. Despite all efforts to establish the pathogenesis of malaria, it is far from being fully understood. In addition, resistance to existing drugs has developed in several strains and the development of new effective compounds to fight these parasites is a major issue. Recent discoveries indicate the potential role of the renin-angiotensin system (RAS) in malaria infection. Angiotensin receptors have not been described in the parasite genome, however several reports in the literature suggest a direct effect of angiotensin-derived peptides on different aspects of the host-parasite interaction. The aim of this review is to highlight new findings on the involvement of the RAS in parasite development and in the regulation of the host immune response in an attempt to expand our knowledge of the pathogenesis of this disease.


Asunto(s)
Interacciones Huésped-Parásitos , Malaria Falciparum/patología , Malaria Falciparum/fisiopatología , Sistema Renina-Angiotensina , Humanos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/inmunología
19.
PLoS One ; 9(10): e107549, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25302946

RESUMEN

The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Túbulos Renales Proximales/patología , Proteinuria/complicaciones , Proteinuria/metabolismo , Albúmina Sérica/metabolismo , Animales , Araquidonato 5-Lipooxigenasa/genética , Bovinos , Línea Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Enfermedades Renales/genética , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Proteinuria/genética , Porcinos
20.
PLoS One ; 8(4): e62999, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23646169

RESUMEN

The contribution of T cells in severe malaria pathogenesis has been described. Here, we provide evidence for the potential role of angiotensin II (Ang II) in modulating splenic T cell responses in a rodent model of cerebral malaria. T cell activation induced by infection, determined by 3 to 4-fold enhancement in CD69 expression, was reduced to control levels when mice were treated with 20 mg/kg losartan (IC50 = 0.966 mg/kg/d), an AT1 receptor antagonist, or captopril (IC50 = 1.940 mg/kg/d), an inhibitor of angiotensin-converting enzyme (ACE). Moreover, the production of interferon-γ and interleukin-17 by CD4+ T cells diminished 67% and 70%, respectively, by both treatments. Losartan reduced perforin expression in CD8+ T cells by 33% while captopril completely blocked it. The upregulation in chemokine receptor expression (CCR2 and CCR5) observed during infection was abolished and CD11a expression was partially reduced when mice were treated with drugs. T cells activated by Plasmodium berghei ANKA antigens showed 6-fold enhance in AT1 levels in comparison with naive cells. The upregulation of AT1 expression was reduced by losartan (80%) but not by captopril. Our results suggest that the AT1/Ang II axis has a role in the establishment of an efficient T cell response in the spleen and therefore could participate in a misbalanced parasite-induced T cell immune response during P. berghei ANKA infection.


Asunto(s)
Angiotensina II/metabolismo , Malaria/inmunología , Malaria/metabolismo , Plasmodium berghei/inmunología , Bazo/inmunología , Subgrupos de Linfocitos T/inmunología , Angiotensina II/inmunología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Adhesión Celular/inmunología , Línea Celular , Movimiento Celular/inmunología , Citocinas/biosíntesis , Citocinas/sangre , Modelos Animales de Enfermedad , Mediadores de Inflamación/sangre , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Malaria Cerebral/inmunología , Ratones , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA