RESUMEN
Magnetic topological insulators constitute a novel class of materials whose topological surface states (TSSs) coexist with long-range ferromagnetic order, eventually breaking time-reversal symmetry. The subsequent bandgap opening is predicted to co-occur with a distortion of the TSS warped shape from hexagonal to trigonal. We demonstrate such a transition by means of angle-resolved photoemission spectroscopy on the magnetically rare-earth (Er and Dy) surface-doped topological insulator Bi2Se2Te. Signatures of the gap opening are also observed. Moreover, increasing the dopant coverage results in a tunable p-type doping of the TSS, thereby allowing for a gradual tuning of the Fermi level toward the magnetically induced bandgap. A theoretical model where a magnetic Zeeman out-of-plane term is introduced in the Hamiltonian governing the TSS rationalizes these experimental results. Our findings offer new strategies to control magnetic interactions with TSSs and open up viable routes for the realization of the quantum anomalous Hall effect.
RESUMEN
Polymorphic phases and collective phenomena-such as charge density waves (CDWs)-in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications. Here, scanning tunneling microscopy (STM) is used to map MBE-grown monolayer (ML) TaTe2 . This work reports the first observation of the 1H polymorphic phase, coexisting with the 1T, and demonstrates that their relative coverage can be controlled by adjusting synthesis parameters. Several superperiodic structures, compatible with CDWs, are observed to coexist on the 1T phase. Finally, this work provides theoretical insight on the delicate balance between Te Te and Ta-Ta interactions that dictates the stability of the different phases. The findings demonstrate that TaTe2 is an ideal platform to investigate competing interactions, and indicate that accurate tuning of growth conditions is key to accessing metastable states in TMDs.
RESUMEN
Bulk and single-layer 2 H-NbSe2 exhibit identical charge density wave order (CDW) with a quasi-commensurate 3 × 3 superlattice periodicity. Here we combine scanning tunnelling microscopy (STM) imaging at T = 1 K of 2 H-NbSe2 with first-principles density functional theory (DFT) calculations to investigate the structural atomic rearrangement of this CDW phase. Our calculations for single-layers reveal that six different atomic structures are compatible with the 3 × 3 CDW distortion, although all of them lie on a very narrow energy range of at most 3 meV per formula unit, suggesting the coexistence of such structures. Our atomically resolved STM images of bulk 2 H-NbSe2 unambiguously confirm this by identifying two of these structures. Remarkably, these structures differ from the X-ray crystal structure reported for the bulk 3 × 3 CDW which in fact is also one of the six DFT structures located for the single-layer. Our calculations also show that due to the minute energy difference between the different phases, the ground state of the 3 × 3 CDW could be extremely sensitive to doping, external strain or internal pressure within the crystal. The presence of multiphase CDW order in 2 H-NbSe2 may provide further understanding of its low temperature state and the competition between different instabilities.
RESUMEN
This tutorial review presents an overview of the basic theoretical aspects of two-dimensional (2D) crystals. We revise essential aspects of graphene and the new families of semiconducting 2D materials, like transition metal dichalcogenides or black phosphorus. Minimal theoretical models for various materials are presented. Some of the exciting new possibilities offered by 2D crystals are discussed, such as manipulation and control of quantum degrees of freedom (spin and pseudospin), confinement of excitons, control of the electronic and optical properties with strain engineering, or unconventional superconducting phases.
RESUMEN
A properly strained graphene monolayer or bilayer is expected to harbour periodic pseudo-magnetic fields with high symmetry, yet to date, a convincing demonstration of such pseudo-magnetic fields has been lacking, especially for bilayer graphene. Here, we report a definitive experimental proof for the existence of large-area, periodic pseudo-magnetic fields, as manifested by vortex lattices in commensurability with the moiré patterns of low-angle twisted bilayer graphene. The pseudo-magnetic fields are strong enough to confine the massive Dirac electrons into circularly localized pseudo-Landau levels, as observed by scanning tunneling microscopy/spectroscopy, and also corroborated by tight-binding calculations. We further demonstrate that the geometry, amplitude, and periodicity of the pseudo-magnetic fields can be fine-tuned by both the rotation angle and heterostrain. Collectively, the present study substantially enriches twisted bilayer graphene as a powerful enabling platform for exploration of new and exotic physical phenomena, including quantum valley Hall effects and quantum anomalous Hall effects.
RESUMEN
The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron-phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.