Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Med ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835968

RESUMEN

This study aimed to evaluate the peripheral defocus induced with a novel perifocal ophthalmic lens for myopia progression control and the potential impact on visual function. This experimental, non-dispensing crossover study evaluated 17 myopic young adults. The peripheral refraction was measured using an open-field autorefractor, at 2.50 m from the target point, in two eccentric points, 25° temporal, 25° nasal, and central vision. Visual contrast sensitivity (VCS) was measured at 3.00 m with a Vistech system VCTS 6500 in low light conditions. Light disturbance (LD) was assessed with a light distortion analyzer 2.00 m away from the device. Peripheral refraction, VCS, and LD were assessed with a monofocal lens and perifocal lens (with an add power of +2.50 D on the temporal side of the lens, and +2.00 D on the nasal side). The results showed that the perifocal lenses induced an average myopic defocus of -0.42 ± 0.38 D (p-value < 0.001) in the nasal retina, at 25° The changes induced by the lower add power in the nasal part of the lens did not induce statistically significant changes in the refraction of the temporal retina. The VCS and LD showed no significant differences between the monofocal and perifocal lenses.

2.
J Clin Med ; 12(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37297813

RESUMEN

PURPOSE: The axial elongation in myopia is associated with some structural and functional retinal changes. The purpose of this study was to investigate the effect of a contact lens (CL) intended for myopia control on the choroidal thickness (ChT) and the retinal electrical response. METHODS: Ten myopic eyes (10 subjects, 18-35 years of age) with spherical equivalents from -0.75 to -6.00 diopters (D) were enrolled. The ChT at different eccentricities (3 mm temporal, 1.5 mm temporal, sub-foveal ChT, 1.5 mm nasal, and 3 mm nasal), the photopic 3.0 b-wave of ffERG and the PERG were recorded and compared with two material-matched contact lenses following 30 min of wear: a single-vision CL (SV) and a radial power gradient CL with +1.50 D addition (PG). RESULTS: Compared with the SV, the PG increased the ChT at all eccentricities, with statistically significant differences at 3.0 mm temporal (10.30 ± 11.51 µm, p = 0.020), in sub-foveal ChT (17.00 ± 20.01 µm, p = 0.025), and at 1.5 mm nasal (10.70 ± 14.50 µm, p = 0.044). The PG decreased significantly the SV amplitude of the ffERG photopic b-wave (11.80 (30.55) µV, p = 0.047), N35-P50 (0.90 (0.96) µV, p = 0.017), and P50-N95 (0.46 (2.50) µV, p = 0.047). The amplitude of the a-wave was negatively correlated with the ChT at 3.0T (r = -0.606, p = 0.038) and 1.5T (r = -0.748, p = 0.013), and the amplitude of the b-wave showed a negative correlation with the ChT at 1.5T (r = -0.693, p = 0.026). CONCLUSIONS: The PG increased the ChT in a similar magnitude observed in previous studies. These CLs attenuated the amplitude of the retinal response, possibly due to the combined effect of the induced peripheral defocus high-order aberrations impacting the central retinal image. The decrease in the response of bipolar and ganglion cells suggests a potential retrograde feedback signaling effect from the inner to outer retinal layers observed in previous studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA