Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34493582

RESUMEN

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Ingeniería de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales , Sitios de Unión , COVID-19/virología , Vacunas contra la COVID-19/economía , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomycetales/metabolismo , Vacunas de Subunidad
2.
J Cell Sci ; 123(Pt 6): 842-52, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20159964

RESUMEN

Specialized secretion systems are used by numerous bacterial pathogens to export virulence factors into host target cells. Leishmania and other eukaryotic intracellular pathogens also deliver effector proteins into host cells; however, the mechanisms involved have remained elusive. In this report, we identify exosome-based secretion as a general mechanism for protein secretion by Leishmania, and show that exosomes are involved in the delivery of proteins into host target cells. Comparative quantitative proteomics unambiguously identified 329 proteins in Leishmania exosomes, accounting for >52% of global protein secretion from these organisms. Our findings demonstrate that infection-like stressors (37 degrees C +/- pH 5.5) upregulated exosome release more than twofold and also modified exosome protein composition. Leishmania exosomes and exosomal proteins were detected in the cytosolic compartment of infected macrophages and incubation of macrophages with exosomes selectively induced secretion of IL-8, but not TNF-alpha. We thus provide evidence for an apparently broad-based mechanism of protein export by Leishmania. Moreover, we describe a mechanism for the direct delivery of Leishmania molecules into macrophages. These findings suggest that, like mammalian exosomes, Leishmania exosomes function in long-range communication and immune modulation.


Asunto(s)
Comunicación Celular , Exosomas/metabolismo , Leishmania donovani/citología , Leishmania donovani/metabolismo , Macrófagos/parasitología , Proteínas Protozoarias/metabolismo , Vías Secretoras , Animales , Biomarcadores/metabolismo , Medios de Cultivo Condicionados/metabolismo , Exosomas/ultraestructura , Espacio Extracelular/metabolismo , Respuesta al Choque Térmico , Concentración de Iones de Hidrógeno , Interleucina-8/metabolismo , Leishmania donovani/patogenicidad , Leishmania donovani/ultraestructura , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Modelos Biológicos , Transporte de Proteínas , Proteómica , Temperatura , Factores de Virulencia/metabolismo
3.
Cell Microbiol ; 13(1): 1-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21040357

RESUMEN

The release of exosomes and other microvesicles by diverse prokaryotic and eukaryotic cells and organisms was first appreciated early in the 20th century. The functional properties of these organelles, however, have only recently been the focus of rigorous investigation. In this review, we discuss the release of microvesicles of varying complexity by diverse microbial pathogens. This includes vesicle secretion by Gram-negative bacteria, eukaryotic parasites of the kinetoplast lineage and opportunistic fungal pathogens of both the ascomycetes and basidiomycetes lineages. We also discuss vesicle release from mammalian cells brought about as a result of infection with bacteria, viruses and prions. In addition, we review the evidence showing that in their specific microenvironments, release of these organelles from diverse pathogens contributes to pathogenesis. Germane to this and based upon recent findings with Leishmania, we propose a model whereby exosome release by an intracellular pathogen serves as a general mechanism for effector molecule delivery from eukaryotic pathogen to host cell cytosol. These new findings linking exosomes and other microvesicles to infection biology have important implications for understanding the immune response to infection and for the design of research strategies aimed at the development of novel therapeutics and vaccines.


Asunto(s)
Ascomicetos/metabolismo , Basidiomycota/metabolismo , Exosomas/metabolismo , Bacterias Gramnegativas/metabolismo , Kinetoplastida/metabolismo , Mamíferos/metabolismo , Animales , Fenotipo , Factores de Virulencia/metabolismo
4.
J Immunol ; 185(9): 5011-22, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20881185

RESUMEN

We investigated the properties of leishmania exosomes with respect to influencing innate and adaptive immune responses. Exosomes from Leishmania donovani modulated human monocyte cytokine responses to IFN-γ in a bimodal fashion by promoting IL-10 production and inhibiting that of TNF-α. Moreover, these vesicles were inhibitory with respect to cytokine responses (IL-12p70, TNF-α, and IL-10) by human monocyte-derived dendritic cells. Exosomes from wild-type (WT) L. donovani failed to prime monocyte-derived dendritic cells to drive the differentiation of naive CD4 T cells into IFN-γ-producing Th1 cells. In contrast, vesicles from heat shock protein (HSP)100(-/-) L. donovani showed a gain-of-function and proinflammatory phenotype and promoted the differentiation of naive CD4 lymphocytes into Th1 cells. Proteomic analysis showed that exosomes from WT and HSP100(-/-) leishmania had distinct protein cargo, suggesting that packaging of proteins into exosomes is dependent in part on HSP100. Treatment of C57BL/6 mice with WT L. donovani exosomes prior to challenge with WT organisms exacerbated infection and promoted IL-10 production in the spleen. In contrast, HSP100(-/-) exosomes promoted spleen cell production of IFN-γ and did not adversely affect hepatic parasite burdens. Furthermore, the proparasitic properties of WT exosomes were not species specific because BALB/c mice exposed to Leishmania major exosomes showed increased Th2 polarization and exacerbation of disease in response to infection with L. major. These findings demonstrate that leishmania exosomes are predominantly immunosuppressive. Moreover, to our knowledge, this is the first evidence to suggest that changes in the protein cargo of exosomes may influence the impact of these vesicles on myeloid cell function.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Dendríticas/microbiología , Exosomas/inmunología , Inmunidad Innata/inmunología , Leishmania donovani/inmunología , Monocitos/microbiología , Animales , Antígenos de Protozoos/inmunología , Diferenciación Celular/inmunología , Separación Celular , Citocinas/biosíntesis , Citocinas/inmunología , Células Dendríticas/inmunología , Electroforesis en Gel Bidimensional , Endopeptidasa Clp , Citometría de Flujo , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Humanos , Leishmania donovani/metabolismo , Leishmaniasis/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Monocitos/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Linfocitos T/citología , Linfocitos T/inmunología
5.
Hum Vaccin Immunother ; 18(5): 2079346, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35666264

RESUMEN

Low-cost, refrigerator-stable COVID-19 vaccines will facilitate global access and improve vaccine coverage in low- and middle-income countries. To this end, subunit-based approaches targeting the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein remain attractive. Antibodies against RBD neutralize SARS-CoV-2 by blocking viral attachment to the host cell receptor, ACE2. Here, a yeast-produced recombinant RBD antigen (RBD-L452K-F490W or RBD-J) was formulated with various combinations of aluminum-salt (Alhydrogel®, AH; AdjuPhos®, AP) and CpG 1018 adjuvants. We assessed the effect of antigen-adjuvant interactions on the stability and mouse immunogenicity of various RBD-J preparations. While RBD-J was 50% adsorbed to AH and <15% to AP, addition of CpG resulted in complete AH binding, yet no improvement in AP adsorption. ACE2 competition ELISA analyses of formulated RBD-J stored at varying temperatures (4, 25, 37°C) revealed that RBD-J was destabilized by AH, an effect exacerbated by CpG. DSC studies demonstrated that aluminum-salt and CpG adjuvants decrease the conformational stability of RBD-J and suggest a direct CpG-RBD-J interaction. Although AH+CpG-adjuvanted RBD-J was the least stable in vitro, the formulation was most potent at eliciting SARS-CoV-2 pseudovirus neutralizing antibodies in mice. In contrast, RBD-J formulated with AP+CpG showed minimal antigen-adjuvant interactions, a better stability profile, but suboptimal immune responses. Interestingly, the loss of in vivo potency associated with heat-stressed RBD-J formulated with AH+CpG after one dose was abrogated by a booster. Our findings highlight the importance of elucidating the key interrelationships between antigen-adjuvant interactions, storage stability, and in vivo performance to enable successful formulation development of stable and efficacious subunit vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Humanos , Animales , Vacunas contra la COVID-19 , Aluminio , Enzima Convertidora de Angiotensina 2 , COVID-19/prevención & control , Ratones Endogámicos BALB C , Glicoproteína de la Espiga del Coronavirus , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
Sci Adv ; 8(11): eabl6015, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294244

RESUMEN

Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain-hepatitis B surface antigen virus-like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses.

7.
NPJ Vaccines ; 6(1): 128, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711846

RESUMEN

Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.

8.
bioRxiv ; 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34282417

RESUMEN

Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>104) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.

9.
bioRxiv ; 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33688647

RESUMEN

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

10.
J Leukoc Biol ; 91(6): 887-99, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442494

RESUMEN

Evasion or subversion of host immune responses is a well-established paradigm in infection with visceralizing leishmania. In this review, we summarize current findings supporting a model in which leishmania target host regulatory molecules and pathways, such as the PTP SHP-1 and the PI3K/Akt signaling cascade, to prevent effective macrophage activation. Furthermore, we describe how virulence factors, secreted by leishmania, interfere with macrophage intracellular signaling. Finally, we discuss mechanisms of secretion and provide evidence that leishmania use a remarkably adept, exosome-based secretion mechanism to export and deliver effector molecules to host cells. In addition to representing a novel mechanism for trafficking of virulence factors across membranes, recent findings indicate that leishmania exosomes may have potential as vaccine candidates.


Asunto(s)
Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Proteínas Protozoarias/inmunología , Transducción de Señal/inmunología , Factores de Virulencia/inmunología , Animales , Humanos , Leishmania donovani/metabolismo , Leishmaniasis Visceral/metabolismo , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Virulencia/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-22919591

RESUMEN

Herein, we review evidence supporting a role for Leishmania exosomes during early infection. We suggest a model in which Leishmania secreted microvesicles released into the extracellular milieu deliver effector cargo to host target cells. This cargo mediates immunosuppression and functionally primes host cells for Leishmania invasion. Leishmania ssp. release microvesicles and the amount of vesicle release and the specific protein cargo of the vesicles is sensitive to changes in environmental conditions that mimic infection. Leishmania exosomes influence the phenotype of treated immune cells. For example, wild-type (WT) exosomes attenuate interferon-γ-induced pro-inflammatory cytokine production (TNF-α) by Leishmania-infected monocytes while conversely enhancing production of the anti-inflammatory cytokine IL-10. The Leishmania proteins GP63 and elongation factor-1α (EF-1α) are found in secreted vesicles and are likely important effectors responsible for these changes in phenotype. GP63 and EF-1α access host cell cytosol and activate multiple host protein-tyrosine phosphatases (PTPs). Activation of these PTPs negatively regulates interferon-γ signaling and this prevents effective expression of the macrophage microbicidal arsenal, including TNF-α and nitric oxide. In addition to changing macrophage phenotype, WT vesicles dampen the immune response of monocyte-derived dendritic cells and CD4+ T lymphocytes. This capacity is lost when the protein cargo of the vesicles is modified, specifically when the amount of GP63 and EF-1α in the vesicles is reduced. It appears that exosome delivery of effector proteins results in activation of host PTPs and the negative regulatory effects of the latter creates a pro-parasitic environment. The data suggest that Leishmania exosomes secreted upon initial infection are capable of delivering effector cargo to naïve target cells wherein the cargo primes host cells for infection by interfering with host cell signaling pathways.


Asunto(s)
Exosomas/fisiología , Leishmania/patogenicidad , Leishmaniasis/etiología , Animales , Exosomas/microbiología , Exosomas/ultraestructura , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Parásitos/fisiología , Humanos , Leishmania/inmunología , Leishmania/fisiología , Leishmania/ultraestructura , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Metaloendopeptidasas/fisiología , Modelos Biológicos , Factor 1 de Elongación Peptídica/fisiología , Proteínas Protozoarias/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA