Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 158(6): 1270-1280, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25175626

RESUMEN

Mutualisms that become evolutionarily stable give rise to organismal interdependencies. Some insects have developed intracellular associations with communities of bacteria, where the interdependencies are manifest in patterns of complementary gene loss and retention among members of the symbiosis. Here, using comparative genomics and microscopy, we show that a three-member symbiotic community has become a four-way assemblage through a novel bacterial lineage-splitting event. In some but not all cicada species of the genus Tettigades, the endosymbiont Candidatus Hodgkinia cicadicola has split into two new cytologically distinct but metabolically interdependent species. Although these new bacterial genomes are partitioned into discrete cell types, the intergenome patterns of gene loss and retention are almost perfectly complementary. These results defy easy classification: they show genomic patterns consistent with those observed after both speciation and whole-genome duplication. We suggest that our results highlight the potential power of nonadaptive forces in shaping organismal complexity.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Genoma Bacteriano , Hemípteros/microbiología , Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/fisiología , Animales , Evolución Molecular , Hemípteros/citología , Hemípteros/fisiología , Datos de Secuencia Molecular , Seudogenes , Simbiosis
2.
Syst Biol ; 71(4): 921-928, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32915964

RESUMEN

If all nucleotide sites evolved at the same rate within molecules and throughout the history of lineages, if all nucleotides were in equal proportion, if any nucleotide or amino acid evolved to any other with equal probability, if all taxa could be sampled, if diversification happened at well-spaced intervals, and if all gene segments had the same history, then tree building would be easy. But of course, none of those conditions are true. Hence, the need for evaluating the information content and accuracy of phylogenetic trees. The symposium for which this historical essay and presentation were developed focused on the importance of phylogenetic support, specifically branch support for individual clades. Here, I present a timeline and review significant events in the history of systematics that set the stage for the development of the sophisticated measures of branch support and examinations of the information content of data highlighted in this symposium. [Bayes factors; bootstrap; branch support; concordance factors; internode certainty; posterior probabilities; spectral analysis; transfer bootstrap expectation.].


Asunto(s)
Nucleótidos , Teorema de Bayes , Filogenia , Probabilidad
3.
Syst Biol ; 71(6): 1504-1523, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35708660

RESUMEN

Contamination of a genetic sample with DNA from one or more nontarget species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and next-generation sequencing studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on the detection of bimodal distributions of patristic distances across gene trees. When contamination occurs between samples within a data set, a comparison between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a data set generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the anchored hybrid enrichment markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned data set, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after the removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution. [Auchenorrhyncha; base-composition bias; Cicadidae; Cicadoidea; Hemiptera; phylogenetic conflict.].


Asunto(s)
Hemípteros , Animales , Hemípteros/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos/genética , Filogenia
4.
Annu Rev Entomol ; 67: 457-482, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34623904

RESUMEN

Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of Magicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, examined the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate changeon Magicicada life cycles. New ecological studies have supported and questioned the role of prime numbers in Magicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of Magicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between Magicicada and their fungal parasites and bacterial endosymbionts.


Asunto(s)
Hemípteros , Animales , Ecología , Ecosistema , Hemípteros/genética , Hemípteros/microbiología , Humanos , Estadios del Ciclo de Vida , Filogeografía
5.
Proc Natl Acad Sci U S A ; 115(2): E226-E235, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279407

RESUMEN

Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos/genética , Hemípteros/microbiología , Simbiosis/fisiología , Animales , Evolución Biológica , Chile , Variación Genética , Genoma Bacteriano , Filogenia
6.
Mol Biol Evol ; 36(6): 1187-1200, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30850829

RESUMEN

The mass application of whole mitogenome (MG) sequencing has great potential for resolving complex phylogeographic patterns that cannot be resolved by partial mitogenomic sequences or nuclear markers. North American periodical cicadas (Magicicada) are well known for their periodical mass emergence at 17- and 13-year intervals in the north and south, respectively. Magicicada comprises three species groups, each containing one 17-year species and one or two 13-year species. Within each life cycle, single-aged cohorts, called broods, of periodical cicadas emerge in different years, and most broods contain members of all three species groups. There are 12 and three extant broods of 17- and 13-year cicadas, respectively. The phylogeographic relationships among the populations and broods within the species groups have not been clearly resolved. We analyzed 125 whole MG sequences from all broods and seven species within three species groups to ascertain the divergence history of the geographic and allochronic populations and their life cycles. Our mitogenomic phylogeny analysis clearly revealed that each of the three species groups had largely similar phylogeographic subdivisions (east, middle, and west) and demographic histories (rapid population expansion after the last glacial period). The mitogenomic phylogeny also partly resolved the brood diversification process, which could be explained by hypothetical temporary life cycle shifts, and showed that none of the 13- and 17-year species within the species groups was monophyletic, possibly due to gene flow between them. Our findings clearly reveal phylogeographic structures in the three Magicicada species groups, demonstrating the advantage of whole MG sequence data in phylogeographic studies.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Hemípteros/genética , Animales , Variación Genética , Filogeografía , Estados Unidos
7.
J Hered ; 110(2): 247-256, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30590568

RESUMEN

Mitochondrial genomes can provide valuable information on the biology and evolutionary histories of their host organisms. Here, we present and characterize the complete coding regions of 107 mitochondrial genomes (mitogenomes) of cicadas (Insecta: Hemiptera: Auchenorrhyncha: Cicadoidea), representing 31 genera, 61 species, and 83 populations. We show that all cicada mitogenomes retain the organization and gene contents thought to be ancestral in insects, with some variability among cicada clades in the length of a region between the genes nad2 and cox1, which encodes 3 tRNAs. Phylogenetic analyses using these mitogenomes recapitulate a recent 5-gene classification of cicadas into families and subfamilies, but also identify a species that falls outside of the established taxonomic framework. While protein-coding genes are under strong purifying selection, tests of relative evolutionary rates reveal significant variation in evolutionary rates across taxa, highlighting the dynamic nature of mitochondrial genome evolution in cicadas. These data will serve as a useful reference for future research into the systematics, ecology, and evolution of the superfamily Cicadoidea.


Asunto(s)
Genoma Mitocondrial , Genómica , Hemípteros/genética , Animales , Anticodón , ADN Espaciador Ribosómico , Orden Génico , Variación Genética , Genómica/métodos , Genotipo , Región de Control de Posición , Filogenia , ARN de Transferencia/genética , Simbiosis
8.
Syst Biol ; 66(4): 569-589, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28123112

RESUMEN

Over the last 30 million years, Australia's landscape has undergone dramatic cooling and drying due to the establishment of the Antarctic Circumpolar Current and change in global CO$_{2}$ levels. Studies have shown that many Australian organisms went extinct during these major cooling events, while others experienced adaptive radiations and increases in diversification rates as a result of exploiting new niches in the arid zone. Despite the many studies on diversification and biogeography in Australia, few have been continent-wide and none have focused on a group of organisms adapted to feeding on plants. We studied 162 species of cicadas in the Australian Pauropsalta complex, a large generic lineage within the tribe Cicadettini. We asked whether there were changes in the diversification rate of Pauropsalta over time and if so: 1) which clades were associated with the rate change? 2) did timing of rate shifts correspond to known periods of dramatic historical climate change, 3) did increases in diversification rate along select lineages correspond to adaptive radiations with movement into the arid zone? To address these questions, we estimated a molecular phylogeny of the Pauropsalta complex using ${\sim}$5300 bp of nucleotide sequence data distributed among five loci (one mtDNA locus and four nDNA loci). We found that this large group of cicadas did not diversify at a constant rate as they spread through Australia; instead the signature of decreasing diversification rate changed roughly around the time of the expansion of the east Antarctic ice sheets ${\sim}$16 Ma and the glaciation of the northern hemisphere ${\sim}$3 Ma. Unlike other Australian taxa, the Pauropsalta complex did not explosively radiate in response to an early invasion of the arid zone. Instead multiple groups invaded the arid zone and experienced rates of diversification similar to mesic-distributed taxa. We found evidence for relictual groups, located in pre-Mesozoic habitat, that have not diversified and continue to reside on mesic hosts in isolated "habitat islands". Future work should focus on groups of similar ages with similar distribution patterns to determine whether this tempo and pattern of diversification and biogeography is consistent with evidence from other phytophagous insects.


Asunto(s)
Biodiversidad , Hemípteros/clasificación , Filogenia , Animales , Australia , Cambio Climático , Hemípteros/genética , Filogeografía
9.
Proc Natl Acad Sci U S A ; 112(33): 10192-9, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26286984

RESUMEN

Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.


Asunto(s)
Alphaproteobacteria/genética , Genoma Bacteriano , Hemípteros/microbiología , Simbiosis , Animales , Evolución Molecular , Femenino , Genoma Mitocondrial , Genómica , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Orgánulos , Filogenia , Plastidios/genética , Ribosomas/metabolismo , Especificidad de la Especie
10.
Mol Phylogenet Evol ; 116: 172-181, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28830831

RESUMEN

Phylogenetic studies of multiple independently inherited nuclear genes considered in combination with patterns of inheritance of organelle DNA have provided considerable insight into the history of species evolution. In particular, investigations of cicadas in the New Zealand genus Kikihia have identified interesting cases where mitochondrial DNA (mtDNA) crosses species boundaries in some species pairs but not others. Previous phylogenetic studies focusing on mtDNA largely corroborated Kikihia species groups identified by song, morphology and ecology with the exception of a unique South Island mitochondrial haplotype clade-the Westlandica group. This newly identified group consists of diverse taxa previously classified as belonging to three different sub-generic clades. We sequenced five nuclear loci from multiple individuals from every species of Kikihia to assess the nuclear gene concordance for this newly-identified mtDNA lineage. Bayes Factor analysis of the constrained phylogeny suggests some support for the mtDNA-based hypotheses, despite the fact that neither concatenation nor multiple species tree methods resolve the Westlandica group as monophyletic. The nuclear analyses suggest a geographic distinction between clearly defined monophyletic North Island clades and unresolved South Island clades. We suggest that more extreme habitat modification on South Island during the Pliocene and Pleistocene resulted in secondary contact and hybridization between species pairs and a series of mitochondrial capture events followed by subsequent lineage evolution.


Asunto(s)
Hemípteros/genética , Hibridación Genética , Filogenia , Animales , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Haplotipos/genética , Mitocondrias/genética , Nueva Zelanda , Especificidad de la Especie
11.
Syst Biol ; 65(1): 16-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493828

RESUMEN

Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock molecular dating while studying the biogeography of ca. 200 species from the global cicada tribe Cicadettini. Because the available fossils are few and uninformative, we calibrate our trees in part with a cytochrome oxidase I (COI) clock prior encompassing a range of literature estimates for arthropods. We show that tribe-level analyses calibrated solely with the COI clock recover extremely old dates that conflict with published estimates for two well-studied New Zealand subclades within Cicadettini. Additional subclade analyses suggest that COI relaxed-clock rates and maximum-likelihood branch lengths become inflated relative to EF-1[Formula: see text] intron and exon rates and branch lengths as clade age increases. We present corrected estimates derived from: (i) an extrapolated EF-1[Formula: see text] exon clock derived from COI-calibrated analysis within the largest New Zealand subclade; (ii) post hoc scaling of the tribe-level chronogram using results from subclade analyses; and (iii) exploitation of a geological calibration point associated with New Caledonia. We caution that considerable uncertainty is generated due to dependence of substitution estimates on both the taxon sample and the choice of model, including gamma category number and the choice of empirical versus estimated base frequencies. Our results suggest that diversification of the tribe Cicadettini commenced in the early- to mid-Cenozoic and continued with the development of open, arid habitats in Australia and worldwide. We find that Cicadettini is a rare example of a global terrestrial animal group with an Australasian origin, with all non-Australasian genera belonging to two distal clades. Within Australia, we show that Cicadettini is more widely distributed than any other cicada tribe, diverse in temperate, arid and monsoonal habitats, and nearly absent from rainforests. We comment on the taxonomic implications of our findings for thirteen cicada genera.


Asunto(s)
Biodiversidad , Evolución Molecular , Hemípteros/clasificación , Filogenia , Distribución Animal , Animales , Australasia , Complejo IV de Transporte de Electrones/genética , Hemípteros/genética , Tiempo
12.
Mol Ecol ; 25(21): 5543-5556, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27661077

RESUMEN

Life history evolution spurred by post-Pleistocene climatic change is hypothesized to be responsible for the present diversity in periodical cicadas (Magicicada), but the mechanism of life cycle change has been controversial. To understand the divergence process of 13-year and 17-year cicada life cycles, we studied genetic relationships between two synchronously emerging, parapatric 13-year periodical cicada species in the Decim group, Magicicada tredecim and M. neotredecim. The latter was hypothesized to be of hybrid origin or to have switched from a 17-year cycle via developmental plasticity. Phylogenetic analysis using restriction-site-associated DNA sequences for all Decim species and broods revealed that the 13-year M. tredecim lineage is genomically distinct from 17-year Magicicada septendecim but that 13-year M. neotredecim is not. We detected no significant introgression between M. tredecim and M. neotredecim/M. septendecim thus refuting the hypothesis that M. neotredecim are products of hybridization between M. tredecim and M. septendecim. Further, we found that introgressive hybridization is very rare or absent in the contact zone between the two 13-year species evidenced by segregation patterns in single nucleotide polymorphisms, mitochondrial lineage identity and head width and abdominal sternite colour phenotypes. Our study demonstrates that the two 13-year Decim species are of independent origin and nearly completely reproductively isolated. Combining our data with increasing observations of occasional life cycle change in part of a cohort (e.g. 4-year acceleration of emergence in 17-year species), we suggest a pivotal role for developmental plasticity in Magicicada life cycle evolution.


Asunto(s)
Cambio Climático , Hemípteros/genética , Hibridación Genética , Estadios del Ciclo de Vida , Animales , Evolución Biológica , ADN Mitocondrial/genética , Genómica , Hemípteros/clasificación , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple
13.
Proc Natl Acad Sci U S A ; 110(17): 6919-24, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23509294

RESUMEN

The evolution of 13- and 17-y periodical cicadas (Magicicada) is enigmatic because at any given location, up to three distinct species groups (Decim, Cassini, Decula) with synchronized life cycles are involved. Each species group is divided into one 13- and one 17-y species with the exception of the Decim group, which contains two 13-y species-13-y species are Magicicada tredecim, Magicicada neotredecim, Magicicada tredecassini, and Magicicada tredecula; and 17-y species are Magicicada septendecim, Magicicada cassini, and Magicicada septendecula. Here we show that the divergence leading to the present 13- and 17-y populations differs considerably among the species groups despite the fact that each group exhibits strikingly similar phylogeographic patterning. The earliest divergence of extant lineages occurred ∼4 Mya with one branch forming the Decim species group and the other subsequently splitting 2.5 Mya to form the Cassini and Decula species groups. The earliest split of extant lineages into 13- and 17-y life cycles occurred in the Decim lineage 0.5 Mya. All three species groups experienced at least one episode of life cycle divergence since the last glacial maximum. We hypothesize that despite independent origins, the three species groups achieved their current overlapping distributions because life-cycle synchronization of invading congeners to a dominant resident population enabled escape from predation and population persistence. The repeated life-cycle divergences supported by our data suggest the presence of a common genetic basis for the two life cycles in the three species groups.


Asunto(s)
Evolución Biológica , Especiación Genética , Hemípteros/fisiología , Estadios del Ciclo de Vida/fisiología , Filogenia , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Demografía , Haplotipos/genética , Hemípteros/genética , Estadios del Ciclo de Vida/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo , Estados Unidos
14.
Mol Phylogenet Evol ; 83: 258-77, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25091217

RESUMEN

The Pauropsalta generic complex is a large group of cicadas (72 described spp.; >82 undescribed spp.) endemic to Australia. No previous molecular work on deep level relationships within this complex has been conducted, but a recent morphological revision and phylogenetic analysis proposed relationships among the 11 genera. We present here the first comprehensive molecular phylogeny of the complex using five loci (1 mtDNA, 4 nDNA), two of which are from nuclear genes new to cicada systematics. We compare the molecular phylogeny to the morphological phylogeny. We evaluate the phylogenetic informativeness of the new loci to traditional cicada systematics loci to generate a baseline of performance and behavior to aid in gene choice decisions in future systematic and phylogenomic studies. Our maximum likelihood and Bayesian inference phylogenies strongly support the monophyly of most of the newly described genera; however, relationships among genera differ from the morphological phylogeny. A comparison of phylogenetic informativeness among all loci revealed that COI 3rd positions dominate the informativeness profiles relative to all other loci but exhibit some among taxon nucleotide bias. After removing COI 3rd positions, COI 1st positions dominate near the terminals, while the period intron has the most phylogenetic informativeness near the root. Among the nuclear loci, ARD1 and QtRNA have lower phylogenetic informativeness than period intron and elongation factor 1 alpha intron, but the informativeness increases at you move from the tips to the root. The increase in phylogenetic informativeness deeper in the tree suggests these loci may be useful for resolving older relationships.


Asunto(s)
Acetiltransferasas/genética , Aminoacil-ARNt Sintetasas/genética , Hemípteros/clasificación , Filogenia , Animales , Australia , Teorema de Bayes , ADN Mitocondrial/genética , Hemípteros/enzimología , Hemípteros/genética , Funciones de Verosimilitud , Análisis de Secuencia de ADN
15.
J Insect Sci ; 152015.
Artículo en Inglés | MEDLINE | ID: mdl-25843582

RESUMEN

The New Zealand cicada genus Kikihia Dugdale 1971 exhibits more than 20 contact zones between species pairs that vary widely in their divergence times (between 20,000 and 2 million years) in which some level of hybridization is evident. Mitochondrial phylogenies suggest some movement of genes across species boundaries. Biparentally inherited and quickly evolving molecular markers like microsatellites are useful for assessing gene flow levels. Here, we present six polymorphic microsatellite loci that amplify DNA from seven species across the genus Kikihia; Kikihia "northwestlandica," Kikihia "southwestlandica," Kikihia muta, Kikihia angusta, Kikihia "tuta," Kikihia "nelsonensis," and Kikihia "murihikua." The markers were developed using whole-genome shotgun sequencing on the 454 pyrosequencing platform. Moderate to high levels of polymorphisms were observed with 14-47 alleles for 213 individuals from 15 populations. Observed and expected heterozygosity range from 0 to 1 and 0.129 to 0.945, respectively. These new markers will be instrumental for the assessment of gene flow across multiple contact zones in Kikihia.


Asunto(s)
Flujo Génico , Hemípteros/clasificación , Hemípteros/genética , Repeticiones de Microsatélite , Animales , Variación Genética , Nueva Zelanda , Filogenia , Dinámica Poblacional
16.
Zootaxa ; 3985(2): 219-51, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26250031

RESUMEN

North America has a diverse cicada fauna with multiple genera from all three Cicadidae subfamilies, yet molecular phylogenetic analyses have been completed only for the well-studied periodical cicadas (Magicicada Davis). The genus Tibicen Latreille, a large group of charismatic species, is in need of such work because morphological patterns suggest multiple groups with complicated relationships to other genera in the tribe Cryptotympanini. In this paper we present a molecular phylogenetic analysis, based on mitochondrial and nuclear DNA, of 35 of the 38 extant USA species and subspecies of the genus Tibicen together with their North American tribal allies (Cornuplura Davis, Cacama Davis), selected Tibicen species from Eurasia, and representatives of other Eurasian and Pacific cryptotympanine genera. This tree shows that Tibicen contains several well-supported clades, one predominating in eastern and central North America and related to Cryptotympana Stål and Raiateana Boulard, another in western North America related to Cacama and Cornuplura, and at least two clades in Eurasia. We also present a morphological cladistic analysis of Tibicen and its close allies based on 27 characters. Character states identified in the cladistic analysis define three new genera, two for North American taxa (Hadoa gen. n. and Neotibicen gen. n.) including several Mexican species, and one for Asian species (Subsolanus gen. n.). Using relaxed molecular clocks and literature-derived mtDNA rate estimates, we estimate the timeframe of diversification of Tibicen clades and find that intergeneric divergence has occurred since the late Eocene, with most extant species within the former Tibicen originating after the mid-Miocene. We review patterns of ecology, behavior, and geography among Tibicen clades in light of the phylogenetic results and note that the study of these insects is still in its early stages. Some Mexican species formerly placed in Tibicen are here transferred to Diceroprocta, following refinement of the definition of that genus.


Asunto(s)
Hemípteros/clasificación , Hemípteros/genética , Filogenia , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , Canadá , ADN Mitocondrial/genética , Ecosistema , Femenino , Hemípteros/anatomía & histología , Hemípteros/crecimiento & desarrollo , Masculino , Tamaño de los Órganos , Análisis de Secuencia de ADN , Estados Unidos
17.
Genome Biol Evol ; 16(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38190231

RESUMEN

We present a high-quality assembly and annotation of the periodical cicada species, Magicicada septendecula (Hemiptera: Auchenorrhyncha: Cicadidae). Periodical cicadas have a significant ecological impact, serving as a food source for many mammals, reptiles, and birds. Magicicada are well known for their massive emergences of 1 to 3 species that appear in different locations in the eastern United States nearly every year. These year classes ("broods") emerge dependably every 13 or 17 yr in a given location. Recently, it has become clear that 4-yr early or late emergences of a sizeable portion of a population are an important part of the history of brood formation; however, the biological mechanisms by which they track the passage of time remain a mystery. Using PacBio HiFi reads in conjunction with Hi-C proximity ligation data, we have assembled and annotated the first whole genome for a periodical cicada, an important resource for future phylogenetic and comparative genomic analysis. This also represents the first quality genome assembly and annotation for the Hemipteran superfamily Cicadoidea. With a scaffold N50 of 518.9 Mb and a complete BUSCO score of 96.7%, we are confident that this assembly will serve as a vital resource toward uncovering the genomic basis of periodical cicadas' long, synchronized life cycles and will provide a robust framework for further investigations into these insects.


Asunto(s)
Hemípteros , Animales , Estados Unidos , Filogenia , Hemípteros/genética , Estadios del Ciclo de Vida , Genómica , Cromosomas , Mamíferos/genética
18.
BMC Evol Biol ; 12: 177, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22967046

RESUMEN

BACKGROUND: The New Zealand (NZ) cicada fauna contains two co-distributed lineages that independently colonized the isolated continental fragment in the Miocene. One extensively studied lineage includes 90% of the extant species (Kikihia + Maoricicada + Rhodopsalta; ca 51 spp.), while the other contains just four extant species (Amphipsalta - 3 spp. + Notopsalta - 1 sp.) and has been little studied. We examined mitochondrial and nuclear-gene phylogenies and phylogeography, Bayesian relaxed-clock divergence timing (incorporating literature-based uncertainty of molecular clock estimates) and ecological niche models of the species from the smaller radiation. RESULTS: Mitochondrial and nuclear-gene trees supported the monophyly of Amphipsalta. Most interspecific diversification within Amphipsalta-Notopsalta occurred from the mid-Miocene to the Pliocene. However, interspecific divergence time estimates had large confidence intervals and were highly dependent on the assumed tree prior, and comparisons of uncorrected and patristic distances suggested difficulty in estimation of branch lengths. In contrast, intraspecific divergence times varied little across analyses, and all appear to have occurred during the Pleistocene. Two large-bodied forest taxa (A. cingulata, A. zelandica) showed minimal phylogeographic structure, with intraspecific diversification dating to ca. 0.16 and 0.37 Ma, respectively. Mid-Pleistocene-age phylogeographic structure was found within two smaller-bodied species (A. strepitans - 1.16 Ma, N. sericea - 1.36 Ma] inhabiting dry open habitats. Branches separating independently evolving species were long compared to intraspecific branches. Ecological niche models hindcast to the Last Glacial Maximum (LGM) matched expectations from the genetic datasets for A. zelandica and A. strepitans, suggesting that the range of A. zelandica was greatly reduced while A. strepitans refugia were more extensive. However, no LGM habitat could be reconstructed for A. cingulata and N. sericea, suggesting survival in microhabitats not detectable with our downscaled climate data. CONCLUSIONS: Unlike the large and continuous diversification exhibited by the Kikihia-Maoricicada-Rhodopsalta clade, the contemporaneous Amphipsalta-Notopsalta lineage contains four comparatively old (early branching) species that show only recent diversification. This indicates either a long period of stasis with no speciation, or one or more bouts of extinction that have pruned the radiation. Within Amphipsalta-Notopsalta, greater population structure is found in dry-open-habitat species versus forest specialists. We attribute this difference to the fact that NZ lowland forests were repeatedly reduced in extent during glacial periods, while steep, open habitats likely became more available during late Pleistocene uplift.


Asunto(s)
Evolución Molecular , Variación Genética , Hemípteros/genética , Filogenia , Análisis de Varianza , Animales , Teorema de Bayes , Calmodulina/genética , Núcleo Celular/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Ecosistema , Complejo IV de Transporte de Electrones/genética , Geografía , Haplotipos , Hemípteros/clasificación , Proteínas de Insectos/genética , Modelos Genéticos , Datos de Secuencia Molecular , Nueva Zelanda , Factor 1 de Elongación Peptídica/genética , Filogeografía , Análisis de Secuencia de ADN , Factores de Tiempo
19.
Syst Biol ; 60(4): 482-502, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21471306

RESUMEN

One of the major tenets of the modern synthesis is that genetic differentiation among subpopulations is translated over time into genetic differentiation among species. Phylogeographic exploration is therefore essential to the study of speciation because it can reveal the presence of subpopulations that may go on to become species or that may already represent cryptic species. Acoustic species-specific mating signals provide a significant advantage for the recognition of cryptic or incipient species. Because the majority of species do not have such easily recognized premating signals, data from acoustically signaling species can serve as a valuable heuristic tool. Acoustic signals are also convenient tools for recognizing hybridization events. Here, we demonstrate that evidence of hybridization in the form of intermediate song phenotypes is present in many contact zones between species of the New Zealand grass cicadas of the Kikihia muta species complex and that recurring mitochondrial DNA (mtDNA) introgression has created misleading patterns that make it difficult to identify certain taxa using song or mtDNA alone. In one case, introgression appears to have occurred between allopatric taxa by dispersal of introgressed populations of an intermediary species ("hybridization by proxy"). We also present a comparison of mtDNA-tree- and song-based taxonomies obtained for the K. muta complex. We find that 12 mtDNA candidate species are identified using shifts in phylogenetic branching rate found by a single-threshold mixed Yule-coalescent lineage model, while only 7 candidate species are identified using songs. Results from the Yule-coalescent model are dependent on factors such as the number of modeled thresholds and the inclusion of duplicate haplotypes. Genetic distances within song species reach a maximum at about 0.028 substitutions/site when likely cases of hybridization and introgression are excluded. Large genetic breaks or "gaps" are not observed between some northern (warmer climate) song clades, possibly because climate-induced bottlenecks have been less severe. These results support ongoing calls for multimarker genetic studies as well as "integrative taxonomy" that combines information from multiple character sources, including behavior, ecology, geography, and morphology.


Asunto(s)
ADN Mitocondrial/química , Hemípteros/genética , Hibridación Genética , Animales , Femenino , Especiación Genética , Haplotipos , Hemípteros/clasificación , Hemípteros/fisiología , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Nueva Zelanda , Fenotipo , Filogeografía , Reproducción , Alineación de Secuencia , Conducta Sexual Animal , Aislamiento Social , Vocalización Animal
20.
Proc Natl Acad Sci U S A ; 106(22): 8975-9, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19451640

RESUMEN

Periodical cicadas are well known for their prime-numbered life cycles (17 and 13 years) and their mass periodical emergences. The origination and persistence of prime-numbered cycles are explained by the hybridization hypothesis on the basis of their lower likelihood of hybridization with other cycles. Recently, we showed by using an integer-based numerical model that prime-numbered cycles are indeed selected for among 10- to 20-year cycles. Here, we develop a real-number-based model to investigate the factors affecting the selection of prime-numbered cycles. We include an Allee effect in our model, such that a critical population size is set as an extinction threshold. We compare the real-number models with and without the Allee effect. The results show that in the presence of an Allee effect, prime-numbered life cycles are most likely to persist and to be selected under a wide range of extinction thresholds.


Asunto(s)
Hemípteros/crecimiento & desarrollo , Hemípteros/fisiología , Estadios del Ciclo de Vida , Selección Genética , Animales , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA