RESUMEN
There are growing concerns about the comeback of vaccine-preventable diseases. Epidemics exert shocks which affect other health performance indicators such as routine immunizations. Early model forecasts indicate decreased use of immunization services, which puts children at greater risk. Concerns about an increase in morbidity and mortality for illnesses other than COVID-19, particularly in children missing routine vaccinations, are of public health interest. In this study, we evaluate COVID-19 effects on the uptake of routine immunization in Zambia.This was an interrupted time series study. National data on routine immunization coverage between January 2017 and December 2022 were analyzed. Interrupted time series analysis was performed to quantify changes in immunization utilization. To determine if changes in the underlying patterns of utilization of immunization service were correlated with the commencement of COVID-19, seasonally adjusted segmented Poisson regression model was utilised.Utilization of health services was similar with historical levels prior to the first case of COVID-19. There was a significant drop in immunization coverage for measles dose two (RR, 0.59; 95% CI: 0.43-0.80). A decreased slope was observed in immunization coverage of Rotavirus dose one (RR, 0.97; 95% CI: 0.96-0.98) and Rotavirus dose two (RR, 0.97; 95% CI: 0.96-0.98). A growing slope was observed for Oral Poliovirus two (RR, 1.007; 95% CI: 1.004-1.011) and Oral Poliovirus three (RR, 1.007; 95% CI: 1.002-1011). We also observed a growing slope in BCG Bacille Calmette-Guerin (BCG) (RR, 1.001; 95% CI: 1.000-1011) and Pentavalent one (RR, 1.00; 95% CI: 1.001-1008) and three (RR, 1.004; 95% CI: 1.001-1008).The COVID-19 pandemic has had a number of unintended consequences that have affected the use of immunization services. Ensuring continuity in the provision of health services, especially childhood immunization, during pandemics or epidemics is crucial. Therefore, Investing in robust healthcare infrastructure to withstand surges, training and retaining a skilled workforce capable of handling emergencies and routine services simultaneously is very cardinal to avoid vaccine-preventable diseases, causing long-term health effects especially child mortality.
RESUMEN
SARS-CoV-2 serosurveys help estimate the extent of transmission and guide the allocation of COVID-19 vaccines. We measured SARS-CoV-2 seroprevalence among women attending ANC clinics to assess exposure trends over time in Zambia. We conducted repeated cross-sectional SARS-CoV-2 seroprevalence surveys among pregnant women aged 15-49 years attending their first ANC visits in four districts of Zambia (two urban and two rural) during September 2021-September 2022. Serologic testing was done using a multiplex bead assay which detects IgG antibodies to the nucleocapsid protein and the spike protein receptor-binding domain (RBD). We calculated monthly SARS-CoV-2 seroprevalence by district. We also categorized seropositive results as infection alone, infection and vaccination, or vaccination alone based on anti-RBD and anti-nucleocapsid test results and self-reported COVID-19 vaccination status (vaccinated was having received ≥1 dose). Among 8,304 participants, 5,296 (63.8%) were cumulatively seropositive for SARS-CoV-2 antibodies from September 2021 through September 2022. SARS-CoV-2 seroprevalence primarily increased from September 2021 to September 2022 in three districts (Lusaka: 61.8-100.0%, Chongwe: 39.6-94.7%, Chipata: 56.5-95.0%), but in Chadiza, seroprevalence increased from 27.8% in September 2021 to 77.2% in April 2022 before gradually dropping to 56.6% in July 2022. Among 5,906 participants with a valid COVID-19 vaccination status, infection alone accounted for antibody responses in 77.7% (4,590) of participants. Most women attending ANC had evidence of prior SARS-CoV-2 infection and most SARS-CoV-2 seropositivity was infection-induced. Capturing COVID-19 vaccination status and using a multiplex bead assay with anti-nucleocapsid and anti-RBD targets facilitated distinguishing infection-induced versus vaccine-induced antibody responses during a period of increasing COVID-19 vaccine coverage in Zambia. Declining seroprevalence in Chadiza may indicate waning antibodies and a need for booster vaccines. ANC clinics have a potential role in ongoing SARS-CoV-2 serosurveillance and can continue to provide insights into SARS-CoV-2 antibody dynamics to inform near real-time public health responses.
RESUMEN
Enteric infections due to viral pathogens are a major public health concern. Detecting the risk areas requires a strong surveillance system for pathogenic viruses in sources such as wastewater. Towards building an environmental surveillance system in Zambia, we aimed to identify group A rotavirus (RVA) and human adenovirus (HAdV) in wastewater. Convenient sampling was conducted at four study sites every Tuesday for five consecutive weeks. The research team focused on three different methods of viral concentration to determine the suitability in terms of cost and applicability for a regular surveillance system: the bag-mediated filtration system (BMFS), polyethylene glycol-based (PEG) precipitation, and skimmed milk (SM) flocculation. We screened 20 wastewater samples for HAdV and RVA using quantitative polymerase chain reaction (qPCR) and conventional polymerase chain reaction (cPCR). Of the 20 samples tested using qPCR, 18/20 (90%) tested positive for HAdV and 14/20 (70%) tested positive for RVA. For the genetic sequencing, qPCR positives were subjected to cPCR, of which 12 positives were successfully amplified. The human adenovirus was identified with a nucleotide identity range of 98.48% to 99.53% compared with the reference genome from GenBank. The BMFS and SM flocculation were the most consistent viral concentration methods for HAdV and RVA, respectively. A statistical analysis of the positives showed that viral positivity differed by site (p < 0.001). SM and PEG may be the most appropriate options in resource-limited settings such as Zambia due to the lower costs associated with these concentration methods. The demonstration of HAdV and RVA detection in wastewater suggests the presence of the pathogens in the communities under study and the need to establish a routine wastewater surveillance system for the identification of pathogens.
RESUMEN
OBJECTIVES: The study aim was to evaluate vaccine effectiveness (VE) of COVID-19 vaccines in preventing symptomatic COVID-19 among healthcare workers (HCWs) in Zambia. We sought to answer the question, 'What is the vaccine effectiveness of a complete schedule of the SARS-CoV-2 vaccine in preventing symptomatic COVID-19 among HCWs in Zambia?' DESIGN/SETTING: We conducted a test-negative case-control study among HCWs across different levels of health facilities in Zambia offering point of care testing for COVID-19 from May 2021 to March 2022. PARTICIPANTS: 1767 participants entered the study and completed it. Cases were HCWs with laboratory-confirmed SARS-CoV-2 and controls were HCWs who tested SARS-CoV-2 negative. Consented HCWs with documented history of vaccination for COVID-19 (vaccinated HCWs only) were included in the study. HCWs with unknown test results and unknown vaccination status, were excluded. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was VE among symptomatic HCWs. Secondary outcomes were VE by: SARS-CoV-2 variant strains based on the predominant variant circulating in Zambia (Delta during May 2021 to November 2021 and Omicron during December 2021 to March 2022), duration since vaccination and vaccine product. RESULTS: We recruited 1145 symptomatic HCWs. The median age was 30 years (IQR: 26-38) and 789 (68.9%) were women. Two hundred and eighty-two (24.6%) were fully vaccinated. The median time to full vaccination was 102 days (IQR: 56-144). VE against symptomatic SARS-CoV-2 infection was 72.7% (95% CI: 61.9% to 80.7%) for fully vaccinated participants. VE was 79.4% (95% CI: 58.2% to 90.7%) during the Delta period and 37.5% (95% CI: -7.0% to 63.3%) during the Omicron period. CONCLUSIONS: COVID-19 vaccines were effective in reducing symptomatic SARS-CoV-2 among Zambian HCWs when the Delta variant was circulating but not when Omicron was circulating. This could be related to immune evasive characteristics and/or waning immunity. These findings support accelerating COVID-19 booster dosing with bivalent vaccines as part of the vaccination programme to reduce COVID-19 in Zambia.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Femenino , Humanos , Adulto , Masculino , Vacunas contra la COVID-19/uso terapéutico , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Zambia/epidemiología , Prueba de COVID-19 , Estudios de Casos y Controles , Eficacia de las Vacunas , Personal de SaludRESUMEN
During a COVID-19 outbreak in a prison in Zambia from December 14 to 19, 2021, a case-control study was done to measure vaccine effectiveness (VE) against infection and symptomatic infection, when the Omicron variant was the dominant circulating variant. Among 382 participants, 74.1% were fully vaccinated, and the median time since full vaccination was 54 days. There were no hospitalizations or deaths. COVID-19 VE against any SARS-CoV-2 infection was 64.8%, and VE against symptomatic SARS-CoV-2 infection was 72.9%. COVID-19 vaccination helped protect incarcerated persons against SARS-CoV-2 infection during an outbreak while Omicron was the dominant variant in Zambia. These findings provide important local evidence that might be used to increase COVID-19 vaccination in Zambia and other countries in Africa.