Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(11): e2119899119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254899

RESUMEN

SignificanceIn species with internal fertilization, sperm spend an important part of their lives within the female. To examine the life history of the sperm during this time, we used semiquantitative proteomics and sex-specific isotopic labeling in fruit flies to determine the extent of molecular continuity between male and female reproductive tracts and provide a global catalog of sperm-associated proteins. Multiple seminal fluid proteins and female proteins associate with sperm immediately after mating. Few seminal fluid proteins remain after long-term sperm storage, whereas female-derived proteins constitute one-fifth of the postmating sperm proteome by then. Our data reveal a molecular "hand-off" from males to females, which we postulate to be an important component of sperm-female interactions.


Asunto(s)
Drosophila/fisiología , Genitales , Espermatozoides/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Femenino , Estadios del Ciclo de Vida , Masculino , Proteoma , Proteómica , Reproducción , Proteínas de Plasma Seminal/metabolismo , Conducta Sexual Animal
2.
Plant J ; 114(4): 855-874, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36883862

RESUMEN

Small RNAs (sRNAs) such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Several 22-nucleotide miRNAs trigger biogenesis cascades of trans-acting secondary siRNAs, which are involved in various developmental and stress responses. Here we show that Himalayan Arabidopsis thaliana accessions having natural mutations in the miR158 locus exhibit robust cascade silencing of the pentatricopeptide repeat (PPR)-like locus. Furthermore, we show that these cascade sRNAs trigger tertiary silencing of a gene involved in transpiration and stomatal opening. The natural deletions or insertions in MIR158 led to improper processing of miR158 precursors, thereby blocking synthesis of mature miR158. Reduced miR158 levels led to increased levels of its target, a pseudo-PPR gene that is targeted by tasiRNAs generated by the miR173 cascade in other accessions. Using sRNA datasets derived from Indian Himalayan accessions, as well as overexpression and knockout lines of miR158, we show that absence of miR158 led to buildup of pseudo-PPR-derived tertiary sRNAs. These tertiary sRNAs mediated robust silencing of a gene involved in stomatal closure in Himalayan accessions lacking miR158 expression. We functionally validated the tertiary phasiRNA that targets NHX2, which encodes a Na+ -K+ /H+ antiporter protein, thereby regulating transpiration and stomatal conductance. Overall, we report the role of the miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2 pathway in plant adaptation.


Asunto(s)
Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , ARN Interferente Pequeño/genética , MicroARNs/genética , MicroARNs/metabolismo , Plantas/metabolismo , Nucleótidos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo
3.
Mol Biol Evol ; 40(8)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37552934

RESUMEN

Crop domestication and the subsequent expansion of crops have long been thought of as a linear process from a wild ancestor to a domesticate. However, evidence of gene flow from locally adapted wild relatives that provided adaptive alleles into crops has been identified in multiple species. Yet, little is known about the evolutionary consequences of gene flow during domestication and the interaction of gene flow and genetic load in crop populations. We study the pseudo-cereal grain amaranth that has been domesticated three times in different geographic regions of the Americas. We quantify the amount and distribution of gene flow and genetic load along the genome of the three grain amaranth species and their two wild relatives. Our results show ample gene flow between crop species and between crops and their wild relatives. Gene flow from wild relatives decreased genetic load in the three crop species. This suggests that wild relatives could provide evolutionary rescue by replacing deleterious alleles in crops. We assess experimental hybrids between the three crop species and found genetic incompatibilities between one Central American grain amaranth and the other two crop species. These incompatibilities might have created recent reproductive barriers and maintained species integrity today. Together, our results show that gene flow played an important role in the domestication and expansion of grain amaranth, despite genetic species barriers. The domestication of plants was likely not linear and created a genomic mosaic by multiple contributors with varying fitness effects for today's crops.


Asunto(s)
Domesticación , Grano Comestible , Grano Comestible/genética , Evolución Biológica , Productos Agrícolas/genética , Flujo Génico
4.
Plant Biotechnol J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923713

RESUMEN

Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.

5.
Mol Biol Rep ; 51(1): 694, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796662

RESUMEN

BACKGROUND: Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS: The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION: Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.


Asunto(s)
Envejecimiento , Antioxidantes , Autofagia , Encéfalo , Curcumina , Estrés Oxidativo , Animales , Curcumina/farmacología , Autofagia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Ratas , Envejecimiento/efectos de los fármacos , Masculino , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Galactosa/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/genética , Beclina-1/metabolismo , Beclina-1/genética
6.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771491

RESUMEN

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Regulación de la Expresión Génica de las Plantas , Pelargonium , Hojas de la Planta , Plantas Modificadas Genéticamente , Pelargonium/genética , Fusarium/patogenicidad , Fusarium/fisiología , Resistencia a la Enfermedad/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Aceites Volátiles/metabolismo , Aceites Volátiles/farmacología , Geranium/genética
7.
Indian J Med Res ; 159(1): 91-101, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38344919

RESUMEN

BACKGROUND OBJECTIVES: The clinical course of COVID-19 and its prognosis are influenced by both viral and host factors. The objectives of this study were to develop a nationwide platform to investigate the molecular epidemiology of SARS-CoV-2 (Severe acute respiratory syndrome Corona virus 2) and correlate the severity and clinical outcomes of COVID-19 with virus variants. METHODS: A nationwide, longitudinal, prospective cohort study was conducted from September 2021 to December 2022 at 14 hospitals across the country that were linked to a viral sequencing laboratory under the Indian SARS-CoV-2 Genomics Consortium. All participants (18 yr and above) who attended the hospital with a suspicion of SARS-CoV-2 infection and tested positive by the reverse transcription-PCR method were included. The participant population consisted of both hospitalized as well as outpatients. Their clinical course and outcomes were studied prospectively. Nasopharyngeal samples collected were subjected to whole genome sequencing to detect SARS-CoV-2 variants. RESULTS: Of the 4972 participants enrolled, 3397 provided samples for viral sequencing and 2723 samples were successfully sequenced. From this, the evolution of virus variants of concern including Omicron subvariants which emerged over time was observed and the same reported here. The mean age of the study participants was 41 yr and overall 49.3 per cent were female. The common symptoms were fever and cough and 32.5 per cent had comorbidities. Infection with the Delta variant evidently increased the risk of severe COVID-19 (adjusted odds ratio: 2.53, 95% confidence interval: 1.52, 4.2), while Omicron was milder independent of vaccination status. The independent risk factors for mortality were age >65 yr, presence of comorbidities and no vaccination. INTERPRETATION CONCLUSIONS: The authors believe that this is a first-of-its-kind study in the country that provides real-time data of virus evolution from a pan-India network of hospitals closely linked to the genome sequencing laboratories. The severity of COVID-19 could be correlated with virus variants with Omicron being the milder variant.


Asunto(s)
COVID-19 , Femenino , Humanos , Masculino , Progresión de la Enfermedad , Hospitales , Estudios Prospectivos , SARS-CoV-2/genética , Adulto , Adolescente , Anciano , Persona de Mediana Edad
8.
Metab Brain Dis ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727934

RESUMEN

Aging is a multifaceted and progressive physiological change of the organism categorized by the accumulation of deteriorating processes, which ultimately compromise the biological functions. The objective of this study was to investigate the anti-aging potential of berberine (BBR) in D-galactose (D-Gal) induced aging in rat models. In this study, male Wistar rats were divided into four groups: The control group was given only vehicle, the BBR group was treated with berberine orally, the D-Gal group was treated with D-galactose subcutaneously and the BBR + D-Gal group was treated with D-galactose and berberine simultaneously. D-galactose exposure elevated the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl and advanced oxidation protein products (AOPP) in the brain. It decreased the anti-oxidants such as reduced glutathione (GSH) and ferric reducing antioxidant potential (FRAP) in the brain. D-galactose treatment also reduced the mitochondrial complexes (I, II, III and IV) activities and elevated the inflammatory markers such as interleukine-6 (IL-6), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP). The mRNA expressions of IL-6 and TNF-α in the brain were upregulated following D-galactose exposure. Berberine co-treatment in D-galactose induced aging rat model prevented the alteration of pro-oxidant and anti-oxidant in the brain. Berberine treatment restored the mitochondrial complex activities in the brain and also normalized the inflammatory markers. Based on these findings we conclude that berberine treatment has the potential to mitigate brain aging in rats via stabilizing the redox equilibrium and neuroinflammation.

9.
BMC Plant Biol ; 23(1): 253, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183263

RESUMEN

BACKGROUND: Legumes can fix atmospheric nitrogen (N) and facilitate N availability to their companion plants in crop mixtures. However, biological nitrogen fixation (BNF) of legumes in intercrops varies largely with the identity of the legume species. The aim of our study was to understand whether BNF and concentration of plant nutrients by common bean is influenced by the identity of the companion plant species in crop mixtures. In this greenhouse pot study, common beans were cultivated with another legume (chickpea) and a cereal (Sorghum). We compared BNF, crop biomass and nutrient assimilation of all plant species grown in monocultures with plants grown in crop mixtures. RESULTS: We found beans to exhibit low levels of BNF, and to potentially compete with other species for available soil N in crop mixtures. The BNF of chickpeas however, was enhanced when grown in mixtures. Furthermore, biomass, phosphorous and potassium values of chickpea and Sorghum plants were higher in monocultures, compared to in mixtures with beans; suggesting competitive effects of beans on these plants. Concentration of calcium, magnesium and zinc in beans was higher when grown with chickpeas than with Sorghum. CONCLUSIONS: It is generally assumed that legumes benefit their companion plant species. Our study highlights the contrary and shows that the specific benefits of cereal-legume mixtures are dependent on the growth rate of the species concerned. We further highlight that the potential of legume-legume mixtures is currently undervalued and may play a strong role in increasing N use efficiency of intercrop-based systems.


Asunto(s)
Fijación del Nitrógeno , Phaseolus , Suelo , Grano Comestible , Biomasa , Nitrógeno
10.
Microb Cell Fact ; 22(1): 226, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925404

RESUMEN

Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.


Asunto(s)
Endófitos , Plantas Medicinales , Humanos , Endófitos/metabolismo , Ecosistema , Hongos/metabolismo , Biodiversidad
11.
Phytother Res ; 37(9): 4018-4041, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37165686

RESUMEN

Polycystic ovary syndrome (PCOS) is most common in women of reproductive age, giving rise to androgen excess and anovulation, leading to infertility and non-reproductive complications. We explored the ameliorating effect of naringenin in PCOS using the Sprague Dawley (SD) rat model and human granulosa cells. Letrozole-induced PCOS rats were given either naringenin (50 mg/kg/day) alone or in combination with metformin (300 mg/kg/day), followed by the estrous cycle, hormonal analysis, and glucose sensitivity test. To evaluate the effect of naringenin on granulosa cell (hGC) steroidogenesis, we treated cells with naringenin (2.5 µM) alone or in combination with metformin (1 mM) in the presence of forskolin (10 µM). To determine the steroidogenesis of CYP-17A1, -19A1, and 3ßHSD2, the protein expression levels were examined. Treatment with naringenin in the PCOS animal groups increased ovulation potential and decreased cystic follicles and levels of androgens. The expression levels of CYP-17A1, -19A1, and 3ßHSD2, were seen restored in the ovary of PCOS SD rats' model and in the human ovarian cells in response to the naringenin. We found an increased expression level of phosphorylated-AKT in the ovary and hGCs by naringenin. Naringenin improves ovulation and suppress androgens and cystic follicles, involving AKT activation.


Asunto(s)
Quiste Folicular , Metformina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Andrógenos/efectos adversos , Ratas Sprague-Dawley , Letrozol/efectos adversos , Proteínas Proto-Oncogénicas c-akt , Quiste Folicular/complicaciones , Modelos Animales de Enfermedad
12.
BMC Biol ; 20(1): 279, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36514080

RESUMEN

BACKGROUND: Male-derived seminal fluid proteins (SFPs) that enter female fruitflies during mating induce a myriad of physiological and behavioral changes, optimizing fertility of the mating pair. Some post-mating changes in female Drosophila melanogaster persist for ~10-14 days. Their long-term persistence is because the seminal protein that induces these particular changes, the Sex Peptide (SP), is retained long term in females by binding to sperm, with gradual release of its active domain from sperm. Several other "long-term response SFPs" (LTR-SFPs) "prime" the binding of SP to sperm. Whether female factors play a role in this process is unknown, though it is important to study both sexes for a comprehensive physiological understanding of SFP/sperm interactions and for consideration in models of sexual conflict. RESULTS: We report here that sperm in male ejaculates bind SP more weakly than sperm that have entered females. Moreover, we show that the amount of SP, and other SFPs, bound to sperm increases with time and transit of individual seminal proteins within the female reproductive tract (FRT). Thus, female contributions are needed for maximal and appropriate binding of SP, and other SFPs, to sperm. Towards understanding the source of female molecular contributions, we ablated spermathecal secretory cells (SSCs) and/or parovaria (female accessory glands), which contribute secretory proteins to the FRT. We found no dramatic change in the initial levels of SP bound to sperm stored in mated females with ablated or defective SSCs and/or parovaria, indicating that female molecules that facilitate the binding of SP to sperm are not uniquely derived from SSCs and parovaria. However, we observed higher levels of SP (and sperm) retention long term in females whose SSCs and parovaria had been ablated, indicating secretions from these female tissues are necessary for the gradual release of Sex Peptide's active region from stored sperm. CONCLUSION: This study reveals that the SP-sperm binding pathway is not entirely male-derived and that female contributions are needed to regulate the levels of SP associated with sperm stored in their storage sites.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Masculino , Femenino , Drosophila melanogaster/fisiología , Proteínas de Drosophila/metabolismo , Semen/metabolismo , Espermatozoides/fisiología , Conducta Sexual Animal/fisiología , Péptidos/metabolismo
13.
Physiol Mol Biol Plants ; 29(6): 815-828, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37520812

RESUMEN

Salinity is a significant concern in crop production, causing severe losses in agricultural yields. Ocimum sanctum, also known as Holy Basil, is an important ancient medicinal plant used in the Indian traditional system of medicine. The present study explores the use of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing strains of plant-growth-promoting bacteria (PGPB) namely Str-8 (Halomonas desiderata), Sd-6 (Brevibacterium halotolerans), Fd-2 (Achromobacter xylosoxidans), Art-7 (Burkholderia cepacia), and Ldr-2 (Bacillus subtilis), and T. harzianum (Th), possessing multi-functional properties like growth promotion, stress alleviation, and for enhancing O. sanctum yield under salt stress. The results showed that co-inoculation of Th and PGPBs enhanced plant height and fresh herb weight by 3.78-17.65% and 7.86-58.76%, respectively; highest being in Th + Fd-2 and Th + Art-7 compared to positive control plants. The doubly inoculated plants showed increased pigments, phenol, flavonoids, protein, sugar, relative water content, and nutrient uptake (Nitrogen and Phosphorous) as compared to monocultures and untreated positive control plants. In addition, co-inoculation in plants resulted in lower Na+, MDA, H2O2, CAT, APX activities, and also lower ACC accumulation (49.75 to 72.38% compared to non-treated salt- stressed plant) in O. sanctum, which probably played a significant role in minimizing the deleterious effects of salinity. Finally, multifactorial analysis showed that co-inoculation of Th and PGPBs improved O. sanctum growth, its physiological activities, and alleviated salt stress compared to single inoculated and positive control plants. These microbial consortia were evaluated for the first time on O. sanctum under salt stress. Therefore, the microbial consortia application could be employed to boost crop productivity in poor, marginalized and stressed agricultural fields. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01328-2.

14.
Clin Gastroenterol Hepatol ; 20(4): e831-e854, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524593

RESUMEN

BACKGROUND: High volume plasma-exchange (HVPE) improves survival in patients with acute liver failure (ALF), but apprehension regarding volume overload and worsening of cerebral edema remain. METHODS: In an open-label randomized controlled trial, 40 consecutive patients of ALF were randomized 1:1 to either standard medical treatment (SMT) or SMT with standard-volume plasma-exchange (SVPE). SVPE was performed using centrifugal apheresis [target volume of 1.5 to 2.0 plasma volumes per session] until desired response was achieved. Cerebral edema was assessed by brain imaging. Results were analyzed in an intention-to-treat analysis. Primary outcome was 21-day transplant-free survival. The levels of cytokines, damage-associated molecular patterns (DAMPs) and endotoxins were analyzed at baseline and day 5. RESULTS: ALF patients [aged 31.5 ± 12.2 years, 60% male, 78% viral, 83% hyperacute, 70% with SIRS were included. At day 5, SVPE [mean sessions 2.15 ± 1.42, median plasma volume replaced 5.049 L] compared to SMT alone, resulted in higher lactate clearance (p = .02), amelioration of SIRS (84% vs. 26%; P = .02), reduction in ammonia levels [(221.5 ± 96.9) vs.(439 ± 385.6) µg/dl, P = .02) and SOFA scores [9.9(±3.3) vs. 14.6(±4.8); P = .001]. There were no treatment related deaths. SVPE was associated with a higher 21-day transplant free-survival [75% vs. 45%; P = .04, HR 0.30, 95%CI 0.01-0.88]. A significant decrease in levels of pro-inflammatory cytokines and an increase in anti-inflammatory cytokines along with a decrease in endotoxin and DAMPs was seen with SVPE. CONCLUSION: In ALF patients with cerebral edema, SVPE is safe and effective and improves survival possibly by a reduction in cytokine storm and ammonia. CLINICALTRIAL: gov (identifier: NCT02718079).


Asunto(s)
Fallo Hepático Agudo , Intercambio Plasmático , Adulto , Citocinas , Femenino , Humanos , Fallo Hepático Agudo/terapia , Masculino , Intercambio Plasmático/métodos , Adulto Joven
15.
Microb Pathog ; 173(Pt A): 105884, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36379371

RESUMEN

Quorum sensing modulatory effect of linalool was tested for the first time against Pseudomonas syringae pv. tomato DC 3000, a bacterial plant pathogen responsible for causing huge losses worldwide. DC 3000 extensively regulates its virulence traits through quorum sensing mechanism involving expression of psyI, an acyl-homoserine lactone (AHL) synthase gene and psyR, a luxR-type regulator. In this study, exposure of DC 3000 to 80 ppm linalool concentration resulted in reduced biofilm formation, hampered motility, decreased AHL production, and reduced secretion of plant cell wall-degrading enzymes followed by negligible effect on the bacterial count and its metabolic activity. Extracellular polymeric substances (EPS), which play a crucial role in the development of biofilm and subsequent infection was significantly reduced which was further confirmed by Fourier Transform Infrared Spectroscopy. The qRT PCR analysis of the gene expression analysis of virulence genes (syringafactin production gene syfA, type III secretion system gene hrpA, flagellar genes fleQ and fliC, and coronatine production gene cfl unveiled significant downregulation of the same under Lin 80 ppm concentration. To further confirm the aforementioned possibilities, docking simulations run between PsyR and linalool suggested a strong interaction with the developed protein model. Overall, the treatment of DC 3000 with Lin 80 ppm affected the phenotypic and genotypic expressions associated with quorum sensing, thereby significantly reducing the infection rate as observed in in-vivo plant assay.


Asunto(s)
Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/genética , Percepción de Quorum/genética , Virulencia/genética , Proteínas Bacterianas/metabolismo , Acil-Butirolactonas/metabolismo
16.
J Infect Chemother ; 28(10): 1370-1374, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35715301

RESUMEN

OBJECTIVES: To assess the risk of neonatal SARS-CoV-2 infection born to the women with confirmed SARS-CoV-2 infection. MATERIALS AND METHODS: This prospective study was conducted at single tertiary hospital from September 2020 and May 2021. 50 pregnant women with confirmed SARS-CoV-2 infection and 50 neonates were included for analysis. We performed comprehensive testing of all biological samples for vertical transmission including the cord blood immunoglobulin. RESULTS: We detected SARS-CoV-2 in one fetal membrane and one amniotic fluid sample. We also demonstrated presence of anti-SARS-CoV-2 IgM antibodies in cord blood of 3 neonates. Though none of the samples of vaginal secretion, breast milk and nasopharyngeal swab from neonates were tested positive for covid infection via RT-PCR. We demonstrated presence of anti-SARS-CoV-2 IgG antibodies in the cord blood which had shown positive correlation with increasing disease to delivery interval and disease severity. CONCLUSION: Vertical transmission of SARS-CoV-2 is possible. As virus was not detected in cervicovaginal secretions and breast milk so vertical transmission through this mechanism seems unlikely. Presence of IgG in cord blood is suggestive of passive immunity acquired from mother. This finding has greater clinical implication as large number of expecting mothers are being vaccinated.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Anticuerpos Antivirales , Femenino , Humanos , Inmunoglobulina G , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Madres , Proyectos Piloto , Embarazo , Estudios Prospectivos , SARS-CoV-2 , Centros de Atención Terciaria
17.
Metab Brain Dis ; 37(6): 1757-1771, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34704220

RESUMEN

Huntington's disease (HD) is a progressively debilitating neurodegenerative disease exhibiting autosomal-dominant inheritance. It is caused by an unstable expansion in the CAG repeat tract of HD gene, which transforms the disease-specific Huntingtin protein (HTT) to a mutant form (mHTT). The profound neuronal death in cortico-striatal circuits led to its identification and characterisation as a neurodegenerative disease. However, equally disturbing are the concomitant whole-body manifestations affecting nearly every organ of the diseased individuals, at varying extents. Altered central and peripheral metabolism of energy, proteins, nucleic acids, lipids and carbohydrates encompass the gross pathology of the disease. Intense fluctuation of body weight, glucose homeostasis and organ-specific subcellular abnormalities are being increasingly recognised in HD. Many of these metabolic abnormalities exist years before the neuropathological manifestations such as chorea, cognitive decline and behavioural abnormalities develop, and prove to be reliable predictors of the disease progression. In this review, we provide a consolidated overview of the central and peripheral metabolic abnormalities associated with HD, as evidenced from clinical and experimental studies. Additionally, we have discussed the potential of metabolic biomolecules to translate into efficient biomarkers for the disease onset as well as progression. Finally, we provide a brief outlook on the efficacy of existing therapies targeting metabolic remediation. While it is clear that components of altered metabolic pathways can mark many aspects of the disease, it is only conceivable that combinatorial therapies aiming for neuronal protection in consort with metabolic upliftment will prove to be more efficient than the existing symptomatic treatment options.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo
18.
Metab Brain Dis ; 37(8): 2783-2792, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121619

RESUMEN

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder marked by progressive neuronal atrophy, particularly in striatum and cerebral cortex. Although predominant manifestations of the disease include loss in the triad of motor, cognitive and behavioral capabilities, metabolic dysfunction in patients and HD models are being increasingly recognized. Patients display progressive body weight loss, which aggravates the disease and leads to cachexia in the terminal stages. Using the Drosophila model of HD, we have earlier reported that diseased flies exhibit an atypical pattern of lipid gain and loss with progression along with exhibiting extensive mitochondrial dysfunction, impaired calcium homeostasis and heightened apoptosis in the fatbody. Here, we first monitored the structural changes that abdominal fatbody undergoes with disease progression. Further, we checked the transcriptional changes of key metabolic genes in whole fly as well as genes regulating mitochondrial function, apoptosis, autophagy and calcium homeostasis in the abdominal fatbody. We found extensive alterations in whole-body and fatbody-specific transcriptional profile of the diseased flies, which was in consort with their stage-specific physiological state. Additionally, we also assessed lysosome-mediated autophagy in the fatbody of diseased flies in order to ascertain the mechanisms contributing to fatbody atrophy at the terminal stage. Interestingly, we found elevated autophagy in fatbody of flies throughout disease progression. This study provides new insights into the effect on peripheral metabolism due to degeneration of neurons in the neurodegenerative disease, thereby discerns novel mechanisms leading to cachexia in diseased flies and advocates for the need of managing metabolic dysfunctions in HD.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Drosophila/genética , Calcio , Caquexia , Atrofia , Homeostasis , Progresión de la Enfermedad , Modelos Animales de Enfermedad
19.
Andrologia ; 54(7): 1643-1659, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35415897

RESUMEN

Fenugreek seed exhibits antidiabetic, antineoplastic, hepatoprotective, antidepressant and immunomodulatory properties. Fenugreek also causes antifertility effects in rodents. However, the impact of fenugreek seed on male reproduction and the possible mode of its action are not properly evaluated. Herein, we examined the effect of aqueous seed extract of fenugreek (FSE) and the possible mechanism of its action on male reproductive health in mice. Parkes mice were orally administered FSE (600 mg/kg body weight/day) or distilled water for 28 and 56 days, respectively. Various sperm parameters, histopathology, serum testosterone level and fertility indices were assessed. Furthermore, steroidogenic enzymes activities, oxidative status and germ cell dynamics in the testis were evaluated. Toxicological endpoints were also assessed. Treatment with FSE caused degenerative changes in the testis histoarchitecture. The treatment also affected various sperm parameters and concentrations of sialic acid and fructose in the epididymis and seminal vesicle, respectively. Fenugreek treatment also had negative impact on oxidative status and germ cell dynamics in the testis; fertility indices were also affected in female mice impregnated by the extract-treated male mice, though libido of the treated male mice remained unaffected. Results show that treatment with FSE caused adverse effects on the male reproductive health and pregnancy outcome in Parkes mice.


Asunto(s)
Trigonella , Animales , Femenino , Masculino , Ratones , Extractos Vegetales/farmacología , Embarazo , Semillas , Espermatogénesis , Testículo
20.
Hepatology ; 71(3): 1009-1022, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31313333

RESUMEN

Transition to chronic kidney disease (CKD) after an episode of acute kidney injury (AKI) is known in patients without cirrhosis. We studied the incidence and risk factors for development of CKD in patients with cirrhosis. Competing risk analysis was performed to identify risk factors for CKD development. Of 818 patients with cirrhosis (age, 50.4 ± 11.8 years; 84% males; Model for End-Stage Liver Disease [MELD], 19.9 ± 9.9), 36% had AKI at enrollment, 27% had previous AKI, and 61% developed new episodes of AKI during the follow-up period. CKD developed in 269 (33%) patients. Serum cystatin C (CysC; subdistribution hazard ratio [SHR], 1.58; 1.07-2.33), episodes of previous AKI (SHR, 1.26; 1.02-1.56), and AKI stage at enrollment (no AKI [SHR, 1] vs. stage 1 [SHR, 3.28; 1.30-8.25] vs. stage 2 [SHR, 4.33; 1.76-10.66] vs. stage 3 [SHR, 4.5; 1.59-12.73]) were identified as baseline risk factors for CKD development. On time-varying competing risk analysis, MELD (SHR, 1.01; 1.00-1.03), number of AKI episodes (SHR, 1.25; 1.15-1.37), and CysC (SHR, 1.38; 1.01-1.89) predicted CKD development. Development of CKD was associated with higher risk of death. Reduction in glomerular filtration rate (GFR) not meeting CKD criteria was observed in 66% of patients with cirrhosis, more so in those with previous AKI episodes and a high CysC level and MELD score. Renal histology, available in 55 patients, showed tubulointerstitial injury in 86%, cholemic nephrosis in 29%, and glomerular changes in 38%. Conclusion: Almost two-thirds of patients with cirrhosis develop episodes of AKI and reduction in GFR; one-third progress to CKD, resulting in adverse outcomes. Higher MELD and CysC levels and number of AKI episodes predict development of CKD in patients with cirrhosis.


Asunto(s)
Lesión Renal Aguda/complicaciones , Cirrosis Hepática/complicaciones , Insuficiencia Renal Crónica/etiología , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/fisiopatología , Adulto , Anciano , Cistatina C/sangre , Femenino , Tasa de Filtración Glomerular , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/fisiopatología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA