Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 605(7911): 741-746, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508656

RESUMEN

Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Adenosina/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Inmunoterapia , Ratones , Fosfatidilinositol 3-Quinasas , Quinolinas/uso terapéutico , Linfocitos T Reguladores
2.
Proteins ; 92(3): 356-369, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37881117

RESUMEN

The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 µg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 µg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 µg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 µg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.


Asunto(s)
Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Virus de la Peste de los Pequeños Rumiantes/metabolismo , Peste de los Pequeños Rumiantes/metabolismo , Línea Celular , Proteínas Virales/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Cabras
3.
Biologicals ; 87: 101785, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121525

RESUMEN

Diagnostic assays that are able to detect foot-and-mouth disease (FMD) virus infection in the vaccinated population are essential tools in the progressive control pathway for the FMD. However, testing of serum samples using a single diagnostic assay may not completely substantiate freedom from the virus infection. Therefore, viral non-structural proteins (NSPs)-based various serological assays have been developed for the detection of FMD infection. Nevertheless, the NSPs-based ELISAs have been developed in the indirect-ELISA format, thereby necessitating the use of species-specific conjugated secondary-antibodies for the detection of anti-NSP antibodies in various FMD-susceptible species. Therefore, this study presents a novel recombinant 2B-NSP-based indirect ELISA, employing HRP-conjugated protein-A/G detection system which can detect anti-NSPs antibodies from multiple FMD-susceptible species in a single ELISA platform. Recombinant 2B (r2B) protein was expressed as His-SUMO tagged protein in the E. Coli cells and purified using NI-NTA affinity column chromatography. Using the r2B protein and HRP-conjugated protein A/G, an indirect ELISA was developed and validated for the detection of anti-2B antibodies in serum samples collected from multiple FMD-susceptible animal species with known FMD status. Further, a resampling based statistical technique has been reported for determination of optimal cut-off value for the diagnostic assay. Through this technique, the optimal cut-off of 44 percentage of positivity value was determined for the assay. At this optimal cut-off value, the developed diagnostic assay provided diagnostic sensitivity, specificity, and accuracy, positive and negative predictive values (PPV and NPV) of 92.35 %, 98.41 %, 95.21 %, 98.58 %, and 91.67 %, respectively. The assay was validated further by analyzing random serum samples collected across multi-locations in India. The assay can be used as a single platform for testing serum samples from different species of FMDV-susceptible animals and will be useful for NSP-based serosurveillance of FMDV.

4.
J Oral Pathol Med ; 52(10): 895-903, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872712

RESUMEN

OBJECTIVES: This review aims to analyse the recurrence rate in BRAFv600e+ and BRAFv600e- ameloblastomas and explore its association with clinicopathological variables. METHODS: A comprehensive search was conducted using databases including PubMed, Embase, Cochrane Central Register of Controlled Trials, Clinicaltrials.gov, Google Scholar and grey literature, without any limitation on start date or language up to 20 June 2023. A random effect meta-analysis was conducted and Metaregression analyses were performed based on available clinicopathological factors. RESULTS: Fifteen studies met the criteria for meta-analysis of outcomes. There was no significant difference in overall recurrence rates between the two groups (risk difference = 0.001, p-value = 0.987). Increasing male:female ratio in the BRAFv600e+ group was associated with a lower reported recurrence, suggesting a higher recurrence rate in females. The odds of having mandibular lesion were four times higher in BRAFv600e+ cases compared to BRAFv600e- cases (confidence interval: 2.121-7.870, p < 0.001, I2 = 28.37%). CONCLUSION: Within the BRAFv600e+ group, females showed a higher reported recurrence rate. This specific clinical group may benefit from BRAFv600e mutation investigation and potential upscaled surgical treatment and additional BRAF inhibitor therapy, which needs validation in future studies.


Asunto(s)
Ameloblastoma , Humanos , Masculino , Femenino , Ameloblastoma/genética , Ameloblastoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Terapia Molecular Dirigida
5.
Curr Microbiol ; 80(8): 245, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328626

RESUMEN

A one-step TaqMan probe-based RT-qPCR assay in the duplex format simultaneously targeting FMD Virus (FMDV) 2B NSP-coding region and 18S rRNA housekeeping gene was developed and evaluated. The duplex RT-qPCR assay specifically detected FMDV genome in both infected cell culture suspensions and a variety of clinical samples such as FMD-affected tongue/feet epithelium, oral/nasal swabs, milk and oro-pharyngeal fluids. The RT-qPCR assay was found to be highly sensitive, since the assay was 105-fold more sensitive than the traditional FMDV detecting antigen-ELISA (Ag-ELISA) and 102-fold better sensitive than both virus isolation and agarose gel-based RT-multiplex PCR. In addition, the assay could detect up to 100 copies of FMDV genome per reaction. In the epithelial samples (n = 582) collected from the FMD-affected animals, the diagnostic sensitivity was 100% (95% CI 99-100%). Similarly, all the FMDV-negative samples (n = 65) tested were confirmed negative by the new RT-qPCR assay, corresponding to 100% diagnostic specificity (95% CI = 94-100%). Further, the duplex RT-qPCR assay proved to be robust, showing an inter-assay co-efficient of variations ranging from 1.4 to 3.56% for FMDV-2B gene target, and from 2 to 4.12% for 18S rRNA gene target. While analyzing FMDV-infected cell culture suspension, a fairly strong positive correlation (correlation coefficient = 0.85) was observed between 2B-based RT-qPCR and WOAH-approved 5'UTR RT-qPCR assays. Therefore, the one-step RT-qPCR assay developed here with an internal control could be used for rapid, effective, and reliable detection of FMDV in pan-serotypic manner, and has the potential for routine diagnosis of FMDV in high throughput manner.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Fiebre Aftosa/diagnóstico , Virus de la Fiebre Aftosa/genética , Sensibilidad y Especificidad , Serogrupo , Reacción en Cadena de la Polimerasa Multiplex
6.
Virus Genes ; 58(2): 113-121, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988898

RESUMEN

Rapid, sensitive, and reliable laboratory detection of foot-and-mouth disease virus (FMDV) infection is essential for containing and controlling virus infection in any geographical area. In this report a SYBR green-based 3Dpol-specific one-step real-time RT-PCR (rRT-PCR) assay was developed for the pan-serotype detection of FMDV in India. The detection limit of the SYBR green-based rRT-PCR was 10-2 TCID50/50 µl, which is 10 times more sensitive than the traditional agarose gel electrophoresis-based RT-multiplex PCR (RT-mPCR). The standard curve exhibited a linear range across 8-log10 units of viral RNA dilution. The reproducibility and specificity of this assay were reasonably high suggesting that the 3Dpol-specific SYBR green rRT-PCR could detect FMDV genome specifically and with little run-to-run variation. The new 3Dpol-specific SYBR green rRT-PCR assay was evaluated alongside the established RT-mPCR using the archived FMDV isolates and clinical field samples from suspected FMD outbreaks. A perfect concordance was observed between the new rRT-PCR and the traditional RT-mPCR on viral RNA in the archived FMDV cell culture isolates tested. Furthermore, 73% of FMDV-suspected clinical samples were detected positive through the 3Dpol-specific SYBR green rRT-PCR, while the detection rate through the traditional RT-mPCR was 57%. Therefore, the SYBR green-based 3Dpol-specific one-step rRT-PCR could be considered as a valuable assay with higher diagnostic sensitivity to complement the routine assays that are being used for FMD virus diagnosis in India.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Benzotiazoles , Diaminas , Fiebre Aftosa/diagnóstico , Virus de la Fiebre Aftosa/genética , Quinolinas , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad
7.
Biologicals ; 79: 19-26, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36096853

RESUMEN

Canine morbillivirus is a highly contagious multi-host pathogen with high morbidity and mortality. Timely diagnosis is of utmost importance to effectively control such a dreadful disease. Monoclonal antibodies (mAbs) serve as a high throughput diagnostics and applied tools for research and development (R&D). In the present study, a total of six mouse monoclonal antibodies were developed. All the mAbs generated belonged to IgG class. Of the six mAbs, two of them, namely CD-2F8 and CD-3D8 were directed against the nucleocapsid protein of CDV as determined in western blotting. The reactivity of all the mAbs was checked in indirect-ELISA and cell-ELISA using different morbilliviruses. The mAbs could broadly be categorized as; CDV specific (CD-3D8 and CD-2F8), cross-reactive to PPR virus (CD-AB3 and CD-4D6) and cross-reactive to both PPR virus and measles virus (CD-5D10 and CD-6E5). The characterized mAbs were used for antigenic profiling of CDV, PPR virus and measles virus. Based on the reactivity pattern; a close antigenic relationship was found among CDV and PPR virus as compared to measles virus. A pair of CDV specific mAbs namely CD-2F8 and CD-3D8 were identified which did not cross-react with measles and PPR viruses and thus could be used for diagnostic applications.


Asunto(s)
Anticuerpos Monoclonales , Virus del Moquillo Canino , Animales , Anticuerpos Monoclonales/química , Virus del Moquillo Canino/inmunología , Perros , Inmunoglobulina G , Virus del Sarampión/inmunología , Ratones , Proteínas de la Nucleocápside , Virus de la Peste de los Pequeños Rumiantes/inmunología
8.
Microb Pathog ; 156: 104940, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33962006

RESUMEN

Cellular receptors play an important role in entry and cell to cell spread of morbillivirus infections. The cells expressing SLAM and Nectin-4 have been used for successful and efficient isolation of canine distemper virus (CDV) in high titre. There are several methods for generation of cells expressing receptor molecules. Here, we have used a comparatively cheaper and easily available method, pcDNA 3.1 (+) for engineering Vero cells to express SLAM gene of goat, sheep and dog origin (Vero/Goat/SLAM (VGS), Vero/Sheep/SLAM (VSS) and Vero/Dog/SLAM (VDS), respectively). The generated cell lines were then compared to test their efficacy to support CDV replication. CDV could be grown in high titre in the cells expressing SLAM and a difference of log two could be recorded in virus titre between VDS and native Vero cells. Also, CDV could be grown in a higher titre in VDS as compared to VGS and VSS. The finding of this study supports the preferential use of SLAM expressing cells over the native Vero cells by CDV. Further, the higher titre of CDV in cells expressing dog-SLAM as compared to the cells expressing SLAM of non-CDV hosts (i.e. goat and sheep) points towards the preferential use of dog SLAM by the CDV and may be a plausible reason for differential susceptibility of small ruminants and Canines to CDV.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Animales , Antígenos CD , Línea Celular , Chlorocebus aethiops , Virus del Moquillo Canino/genética , Perros , Cabras , Activación de Linfocitos , Ovinos , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Células Vero
9.
Proc Natl Acad Sci U S A ; 114(17): E3452-E3461, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28389569

RESUMEN

Atlantic herring is an excellent species for studying the genetic basis of adaptation in geographically distant populations because of its characteristically large population sizes and low genetic drift. In this study we compared whole-genome resequencing data of Atlantic herring populations from both sides of the Atlantic Ocean. An important finding was the very low degree of genetic differentiation among geographically distant populations (fixation index = 0.026), suggesting lack of reproductive isolation across the ocean. This feature of the Atlantic herring facilitates the detection of genetic factors affecting adaptation because of the sharp contrast between loci showing genetic differentiation resulting from natural selection and the low background noise resulting from genetic drift. We show that genetic factors associated with timing of reproduction are shared between genetically distinct and geographically distant populations. The genes for thyroid-stimulating hormone receptor (TSHR), the SOX11 transcription factor (SOX11), calmodulin (CALM), and estrogen receptor 2 (ESR2A), all with a significant role in reproductive biology, were among the loci that showed the most consistent association with spawning time throughout the species range. In fact, the same two SNPs located at the 5' end of TSHR showed the most significant association with spawning time in both the east and west Atlantic. We also identified unexpected haplotype sharing between spring-spawning oceanic herring and autumn-spawning populations across the Atlantic Ocean and the Baltic Sea. The genomic regions showing this pattern are unlikely to control spawning time but may be involved in adaptation to ecological factor(s) shared among these populations.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Receptores de Tirotropina/genética , Animales , Océano Atlántico , Estudio de Asociación del Genoma Completo
10.
Can J Microbiol ; 65(11): 783-794, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31238018

RESUMEN

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52-136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


Asunto(s)
Mamíferos/genética , Infecciones por Morbillivirus/veterinaria , Morbillivirus/fisiología , Receptores Virales/genética , Secuencia de Aminoácidos , Animales , Gatos/genética , Bovinos/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Perros/genética , Cabras/genética , Especificidad del Huésped , Mamíferos/clasificación , Mamíferos/virología , Morbillivirus/genética , Infecciones por Morbillivirus/genética , Infecciones por Morbillivirus/metabolismo , Infecciones por Morbillivirus/virología , Filogenia , Receptores Virales/química , Alineación de Secuencia , Análisis de Secuencia , Ovinos/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/química , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética
11.
Biologicals ; 62: 57-64, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31588012

RESUMEN

The present investigation deals with the characterization of defective interfering (DI) particles of Peste-des-petits ruminants (PPR) vaccine Sungri/96 strain generated as a result of high MOI in Vero cells. During the serial 10 passages, infectivity titres drastically reduced from 6.5 to 2.25 log10TCID50/ml at high MOI. Further, attenuation of CPE with high MOI indicated generation of DI particles that resulted in no/slow progression of CPE during the late passages. Monoclonal antibody based cell ELISA indicated normal protein (N & H) packaging in samples with DI activity. At genomic level, inconsistency in amplicon intensity of H gene was observed in RT-PCR, indicating a possible defect of H gene. Further analysis of copy number of PPRV by RT-qPCR indicated intermittent fluctuations of viral genomic RNA copies. The significant decline of viral RNA copies with MOI 3 (314 copies) compared to low MOI (512804 copies), proved that higher DI multiplicities cause more interference with the replication process of the standard virus. Therefore, MOI is critical for manufacturing of vaccines. These investigations will help in upscaling of PPR vaccines in view of ongoing National and Global PPR control and eradication programme.


Asunto(s)
Virus Defectuosos , Genoma Viral , Virus de la Peste de los Pequeños Rumiantes , ARN Viral , Vacunas Virales , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Virus Defectuosos/genética , Virus Defectuosos/inmunología , Virus de la Peste de los Pequeños Rumiantes/genética , Virus de la Peste de los Pequeños Rumiantes/crecimiento & desarrollo , ARN Viral/genética , ARN Viral/inmunología , Células Vero , Vacunas Virales/genética , Vacunas Virales/inmunología
12.
Arch Virol ; 161(11): 2953-67, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27522587

RESUMEN

Peste des petits ruminants (PPR) is a highly contagious, economically important viral disease of small ruminants, targeted for global eradication by the year 2030. The recent geographic surge in PPR virus distribution, economic implications, the success of the rinderpest eradication campaign, and ongoing national/regional efforts convinced the FAO and OIE to initiate a global PPR control and eradication strategy. Since its discovery, a series of diagnostic tools have been developed for detecting PPR virus and virus-specific antibodies. Furthermore, it is understood that diagnostic and vaccine-monitoring tools are inevitable components of the four-stage strategy of global PPR eradication from assessment to the post-eradication phase. However, these tools may not be suitable for all stages of PPR control and eradication. For instance, diagnostics such as ELISA could be used for mass screening of clinical and serum samples, whereas immunochromatographic tests can be used at the field level as a pen-side test. Yet, assays with higher sensitivity, such as RT-PCR, RT-PCR ELISA, real-time RT-PCR and LAMP are important for early diagnosis of PPR and also, theoretically, during the late stages of eradication or when sampling non-natural hosts. Moreover, during the later stages of any control program, suspected/doubtful outbreaks will have to be reconfirmed using multiple laboratory tests. Hence, diagnostics can and should be efficiently applied at different stages of the PPR control and eradication campaign based on available resources and the number of samples to be tested. This article provides an overview of the various PPR diagnostic tools and suggests where and how they should be logically applied during the different phases of global PPR control and eradication.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Pruebas Diagnósticas de Rutina/métodos , Peste de los Pequeños Rumiantes/diagnóstico , Sistemas de Atención de Punto , Animales , Salud Global , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/prevención & control
13.
Evol Appl ; 17(3): e13675, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38495946

RESUMEN

Understanding how marine organisms adapt to local environments is crucial for predicting how populations will respond to global climate change. The genomic basis, environmental factors and evolutionary processes involved in local adaptation are however not well understood. Here we use Atlantic herring, an abundant, migratory and widely distributed marine fish with substantial genomic resources, as a model organism to evaluate local adaptation. We examined genomic variation and its correlation with environmental variables across a broad environmental gradient, for 15 spawning aggregations in Atlantic Canada and the United States. We then compared our results with available genomic data of northeast Atlantic populations. We confirmed that population structure lies in a fraction of the genome including likely adaptive genetic variants of functional importance. We discovered 10 highly differentiated genomic regions distributed across four chromosomes. Nine regions show strong association with seasonal reproduction. One region, corresponding to a known inversion on chromosome 12, underlies a latitudinal pattern discriminating populations north and south of a biogeographic transition zone on the Scotian Shelf. Genome-environment associations indicate that winter seawater temperature best correlates with the latitudinal pattern of this inversion. The variation at two so-called 'islands of divergence' related to seasonal reproduction appear to be private to the northwest Atlantic. Populations in the northwest and northeast Atlantic share variation at four of these divergent regions, simultaneously displaying significant diversity in haplotype composition at another four regions, which includes an undescribed structural variant approximately 7.7 Mb long on chromosome 8. Our results suggest that the timing and geographic location of spawning and early development may be under diverse selective pressures related to allelic fitness across environments. Our study highlights the role of genomic architecture, ancestral haplotypes and selection in maintaining adaptive divergence in species with large population sizes and presumably high gene flow.

14.
Vet Q ; 44(1): 1-10, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38903046

RESUMEN

Foot-and-mouth disease Virus (FMDV) serotype Asia1 is prevalent in the Indian subcontinent, with only G-III and G-VIII reported in India until 2020. However, in 2019, a novel genetic group within serotype Asia1, designated as G-IX, emerged in Bangladesh, followed by its detection in India in 2020. This report presents analyses of the complete coding region sequences of the G-IX lineage isolates. The length of the open reading frame (ORF) of the two G-IX isolates was 6990 nucleotides without any deletion or insertion. The G-IX isolates showed the highest sequence similarity with an isolate of G-III at the ORF, L, P2, and P3 regions, and with an isolate of G-VIII at the P1 region. Phylogenetic analysis based on the capsid region (P1) supports the hypothesis that G-VIII and G-IX originated from a common ancestor, as speculated earlier. Further, VP1 region-based phylogenetic analyses revealed the re-emergence of G-VIII after a gap of 3 years. One isolate of G-VIII collected during 2023 revealed a codon insertion in the G-H loop of VP1. The vaccine matching studies support the suitability of the currently used Indian vaccine strain IND63/1972 to contain outbreaks due to viruses belonging to G-IX.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Filogenia , Serogrupo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/clasificación , Animales , Fiebre Aftosa/virología , Fiebre Aftosa/epidemiología , Sistemas de Lectura Abierta/genética , India/epidemiología , Bangladesh/epidemiología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Bovinos , Antígenos Virales/genética , Proteínas de la Cápside/genética , Genoma Viral
15.
J Virol Methods ; 318: 114754, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37230193

RESUMEN

Early and definitive disease diagnosis is critical for effective disease control. 50% buffered glycerine is commonly used viral transport medium, which is not always available and required cold chain. Tissues samples archived in 10% neutral buffered formalin (NBF) can preserve nucleic acid that can be used in molecular studies and disease diagnosis. The present study's goal was to detect the foot-and-mouth disease (FMD) viral genome in formalin-fixed archived tissue which may avoid cold chain during transportation. This study used FMD suspected samples preserved in 10% neutral buffered formalin from 0 to 730 days post fixation (DPF). All archived tissues were positive for FMD viral genome by multiplex RT-PCR and RT-qPCR up to 30 DPF, whereas archived epithelium tissues and thigh muscle were positive for FMD vial genome up to 120 DPF. FMD viral genome was detected in cardiac muscle up to 60 DPF and 120 DPF, respectively. The findings suggest that 10% neutral buffered formalin could be used for sample preservation and transportation for timely and accurate FMD diagnosis. More samples need to be tested before implementing the use of 10% neutral buffered formalin as a preservative and transportation medium. The technique may add value in ensuring biosafety measures for creation during disease free zone as well.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Fiebre Aftosa/diagnóstico , Formaldehído , Virus de la Fiebre Aftosa/genética
16.
J Vet Sci ; 24(3): e40, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37271508

RESUMEN

Analysis of the VP1 gene sequence of the foot and mouth disease virus (FMDV) is critical to understanding viral evolution and disease epidemiology. A standard set of primers have been used for the detection and sequence analysis of the VP1 gene of FMDV directly from suspected clinical samples with limited success. The study validated VP1-specific degenerate primer-based reverse transcription polymerase chain reaction (RT-PCR) for the qualitative detection and sequencing of serotype O FMDV lineages circulating in India. The novel degenerate primer-based RT-PCR amplifying the VP1 gene can circumvent the genetic heterogeneity observed in viruses after cell culture adaptation and facilitate precise viral gene sequence analysis from clinical samples.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Serogrupo , Fiebre Aftosa/epidemiología , Serotipificación/veterinaria , Heterogeneidad Genética
17.
J Virol Methods ; 322: 114829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783396

RESUMEN

Serotype identification occupies the central part of foot and mouth disease (FMD) diagnosis workflow and vaccination decision tree. In this study, a reverse transcription-multiplex PCR (RT-mPCR) strategy wherein three assays with unique combinations of serotype specific primers targeting the VP1 region was developed to differentiate FMD virus serotypes O, A and Asia 1 based on differential size of the PCR amplicons on agarose gel. Their diagnostic performance relative to the mPCR assay in use in India was evaluated on 169 clinical samples and 210 cell culture grown virus isolates. The relative diagnostic sensitivity was found to be 99.69%, 98.78% and 99.08% for primer combinations 1, 2 and 3, respectively. These assays proved their worth by detecting serotype in three FMD suspected specimens that went undiagnosed in the existing mPCR and also by identifying multiple serotypes in the same sample. Their detection limits varied from log10 2 to log10 4 viral RNA dilution and from 100 to 0.1 TCID50 virus depending on the serotype. The validated novel mPCR assays show promise to be included in the routine diagnostic tool-box to augment the efficiency of diagnosis of FMD virus serotypes that display extreme genetic diversity and a tendency of transboundary dispersal.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Serogrupo , Transcripción Reversa , Reacción en Cadena de la Polimerasa Multiplex , Serotipificación , Sensibilidad y Especificidad , Fiebre Aftosa/diagnóstico , India , Diferenciación Celular
18.
Viruses ; 15(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515215

RESUMEN

In India, widespread foot-and-mouth disease (FMD) outbreaks occurred in 2021. The objective of this study was to identify genetic lineages and evaluate the antigenic relationships of FMD virus (FMDV) isolates gathered from outbreaks reported between 2019 and 2022. Our study shows that the lineages O/ME-SA/Ind2001e and the O/ME-SA/Cluster-2018 were both responsible for the FMD outbreaks on an epidemic scale during 2021. This observation is in contrast to earlier findings that suggested epidemic-scale FMD outbreaks in India are often connected to a single genetic lineage. Additionally, we report here the identification of the O/ME-SA/PanAsia-2/ANT10 sub-lineage in India for the first time, which was connected to two intermittent outbreaks in Jammu and Kashmir. The current study demonstrates that the O/ME-SA/ind2001e lineage has a strong presence outside of the Indian subcontinent. Furthermore, the O/ME-SA/Cluster-2018 was observed to have a wider geographic distribution than previously, and like the O/ME-SA/Ind2001d and O/ME-SA/Ind2001e lineages in the past, it may eventually spread outside of its geographic niche. For O/ME-SA/Ind2001e and O/ME-SA/Cluster-2018, the predicted substitution rate for the VP1 region was 6.737 × 10-3 and 8.257 × 10-3 nt substitutions per site per year, respectively. The time of the most recent common ancestor of the O/ME-SA/Ind2001e and O/ME-SA/Cluster-2018 strains suggests that the viruses possibly emerged during 2003-2011 and 2009-2017, respectively. Recent sightings of the O/ME-SA/PanAsia2/ANT10 virus in India and the O/ME-SA/Ind2001e virus in Pakistan point to possible cross-border transit of the viruses. The results of a two-dimensional viral neutralization test revealed that all of the field isolates were antigenically matched to the currently used Indian vaccine strain O INDR2/1975. These results suggest that the serotype O vaccine strain can protect against outbreaks brought on by all three circulating lineages.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Serogrupo , Filogenia , Brotes de Enfermedades/prevención & control , India/epidemiología
19.
Vet Res Commun ; 47(4): 1915-1924, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37222940

RESUMEN

Foot-and-mouth disease (FMD) is endemic in India with a majority of outbreaks caused by FMD virus (FMDV) serotype O. In the present study a panel of eight (2F9, 2G10, 3B9, 3H5, 4C8, 4D6, 4G10 and 5B6) mouse monoclonal antibodies (MAbs) were developed against FMDV serotype O Indian vaccine strain, O/IND/R2/75 via hybridoma systems. The MAbs generated were FMDV/O specific without cross-reactivity against FMDV type A and Asia 1. All the MAbs were identified as IgG1/kappa type. Out of eight, three MAbs (3B9, 3H5 and 4G10) demonstrated virus neutralizing activity. The reactivity of all MAbs increased with heat treated (@560C) serotype O antigen compared to untreated antigen in sandwich ELISA indicating that their binding epitopes are linear. Six MAbs (except 2F9 and 4D6) reacted with recombinant P1 protein of homologous virus in an indirect ELISA among which only MAb 3B9 bound to VP1. MAb profiling of 37 serotype O field viruses isolated between the years 1962 and 2021 demonstrated antigenic similarity between field isolates and reference vaccine strain. MAbs 5B6 and 4C8 consistently reacted with all 37 isolates. In indirect immunofluorescence assay MAb 5B6 bound well with FMDV/O antigen. Finally, a sandwich ELISA was successfully developed using rabbit polyclonal anti-FMDV/O serum and MAb 5B6 for detection of FMDV/O antigen in clinical samples (n = 649). The new assay exhibited 100% and 98.89% diagnostic sensitivity and specificity respectively compared to traditional polyclonal antibody-based sandwich ELISA suggesting that the MAb-based ELISA developed here could be an effective method for detection of FMDV serotype O.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas , Ratones , Animales , Conejos , Anticuerpos Monoclonales , Serogrupo , Antígenos O , Fiebre Aftosa/diagnóstico , Ensayo de Inmunoadsorción Enzimática/veterinaria , Anticuerpos Antivirales
20.
Virus Res ; 333: 199140, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37268276

RESUMEN

Foot and mouth disease (FMD) has engendered large scale socioeconomic crises on numerous occasions owing to its extreme contagiousness, transboundary nature, complicated epidemiology, negative impact on productivity, trade embargo, and need for intensive surveillance and expensive control measures. Emerging FMD virus variants have been predicted to have originated and spread from endemic Pool 2, native to South Asia, to other parts of the globe. In this study, 26 Indian serotype A isolates sampled between the year 2015 and 2022 were sequenced for the VP1 region. BLAST and maximum likelihood phylogeny suggest emergence of a novel genetic group within genotype 18, named here as 'A/ASIA/G-18/2019' lineage, that is restricted so far only to India and its eastern neighbour, Bangladesh. The lineage subsequent to its first appearance in 2019 seems to have displaced all other prevalent strains, in support of the phenomenon of 'genotype/lineage turnover'. It has diversified into two distinct sub-clusters, reflecting a phase of active evolution. The rate of evolution of the VP1 region for the Indian serotype A dataset was estimated to be 6.747 × 10-3 substitutions/site/year. India is implementing a vaccination centric FMD control programme. The novel lineage showed good antigenic match with the proposed vaccine candidate A IND 27/2011 when tested in virus neutralization test, while the existing vaccine strain A IND 40/2000 showed homology with only 31% of the isolates. Therefore, in order to combat this challenge of antigenic divergence, A IND 27/2011 could be the preferred strain in the Indian vaccine formulations.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Serogrupo , Antígenos Virales , India/epidemiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA